全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微膨胀和侧向约束共同作用下混凝土徐变性能和孔结构的关系

DOI: 10.14062/j.issn.0454-5648.2015.05.06

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究膨胀剂在微膨胀和侧限约束共同作用时对混凝土徐变性能的影响,以及徐变性能与孔结构变化的关系。在室内进行了膨胀剂掺量分别为4%、8%、12%的混凝土徐变试验,测试了钢管与混凝土整体纵向变形随时间的变化及孔结构的分布规律,并结合标准养护无侧向约束、密封养护无侧向约束及密封养护有侧向约束3种情况的孔结构分析,进行了不同侧向约束下的混凝土徐变试验。结果表明随着膨胀剂掺量的增加,混凝土中孔数量、孔隙率在减少;混凝土徐变度随着膨胀剂掺量的增大而减小。限制作用下混凝土的孔隙率、平均孔径和气孔含量比无侧向约束的混凝土小;侧向限制可以明显减小混凝土徐变度。研究认为膨胀剂通过固相和液相化学反应生成钙矾石,其吸水肿胀和结晶压力作用使混凝土体积膨胀;同时在钢管侧向约束力的作用下,混凝土存在的自应力促进了进一步水化,改变了混凝土的孔结构,从而使混凝土更加致密,减小了混凝土的徐变度。

References

[1]  Civil Engineering, Architecture and Building Materials, 2012:
[2]  178–181.
[3]  韩林海, 杨有福, 刘威. 长期荷载作用对矩形钢管混凝土轴心受压
[4]  柱力学性能的影响研究[J]. 土木工程学报, 2004(3): 12–18.
[5]  HAN Linhai, YANG Youfu, LIU Wei. China Civil Eng J (in Chinese),
[6]  2004(3): 12-18.
[7]  王元丰. 钢管混凝土徐变理论[M]. 北京: 科学出版社, 2013: 48–57.
[8]  张戎令, 王起才, 马丽娜, 等. 膨胀剂掺量和应力比对钢管混凝土
[9]  徐变性能的影响[J]. 中南大学学报, 2014, 45(7): 2146–2423.
[10]  ZHANG Rongling, WANG Qicai, MA Lina, et al. J Central South
[11]  Unive: Sci Technol (in Chinese), 2014, 45(7): 2146–2423.
[12]  张戎令, 杨阳, 王起才, 等.钢管-微膨胀混凝土气孔结构改变对徐
[13]  变的影响[J]. 硅酸盐通报, 2014, 33(6): 1–6.
[14]  张戎令, 王起才, 马丽娜, 等. 复配外加剂体系对高性能混凝土收
[15]  缩性能的影响[J]. 硅酸盐通报, 2013, 32(11): 2194–2199,2205.
[16]  ZHANG Ron-ling, WANG Qicai, MA Lina, et al. Bull Chin Ceram
[17]  Soc(in Chinese), 2013, 32(11): 2194-2199, 2205.
[18]  谭素杰, 齐加连. 长期荷载下对钢管混凝土受压构件强度影响的实
[19]  验研究[J]. 哈尔滨建筑工程学院学报, 1987(2): 10–24.
[20]  TAN Shujie, QI Jialiang. J Harbin Eng Colleg (in Chinese), 1987(2):
[21]  10–24.
[22]  张 辉, 丁建彤, 高培伟. 混凝土气孔结构自动测试方法对比分析
[23]  [J]. 低温建筑技术, 2009, 12: 7–9,20.
[24]  ZHANG Hui, DING Jiantong, GAO Peiwei. Low Temp Architect
[25]  Technol (in Chinese), 2009, 12: 7–9,20.
[26]  ? 钟善桐. 钢管混凝土统一理论—研究与应用[M]. 北京: 清华大学
[27]  出版社, 2006: 15–31.
[28]  SHAMS M, SAADEGHVAZIRI M. Nonlinear response of
[29]  concrete-filled steel tubular columns under axial loading [J].ACI
[30]  Structural J, 1999, 96(6): 1009–1017.
[31]  WENDNER R, HUBLER M H, BA?ANT Z P. The B4 Model for
[32]  Multi-decade Creep and Shrinkage Prediction[C]. A Tribute to Zdenek
[33]  P. Bazant - Proceedings of the 9th Int. Conf. on Creep, Shrinkage, and
[34]  Durability Mechanics, 2013: 429–436.
[35]  HUANG Yue, EHAB H. Buckling of One-Way High-Strength
[36]  Concrete Panels: Creep and Shrinkage Effects [J]. J Eng Mechanics,
[37]  2013, 139(12): 1856–1867.
[38]  ZHANG Q, LE ROY R, VANDAMME M, et al. Long-term creep
[39]  properties of cementitious materials - Comparing compression tests on
[40]  concrete with microindentation tests on cement [C]// Fifth Biot
[41]  Conference on Poromechanics. Vienna, Austria, 2013: 1596–1604.
[42]  MULLER HARALD S, ECKHARDT J.D, MICHAELH. New
[43]  experimental approach to study creep and shrinkagemechanisms of
[44]  concrete on the nano-scale level[C]. Mechanics and Physics of Creep,
[45]  Shrinkage, and Durability of Concrete, 2013: 150–157.
[46]  ISABEL A, MULLER HARALD S. Material law on the
[47]  time-dependent stress-strain behavior of young concretes[C]. A Tribute
[48]  to Zdenek P. Bazant - Proceedings of the 9th Int. Conf. on Creep,
[49]  Shrinkage, and Durability Mechanics, 2013: 467–474.
[50]  BARY B, HE Q C, THAI M Q. Coupled damage and multiscale creep
[51]  model applied to cementitious materials [C]. A Tribute to Zdenek P.
[52]  Bazant - Proceedings of the 9th Int. Conf. on Creep, Shrinkage, and
[53]  Durability Mechanics, 2013: 219–226.
[54]  ZHANG Rongling, WANG Liang, YANG Changan, et al. Simulation
[55]  analysis of shrinkage and creep for bowstring arch bridge steel tubeconcrete in different specification[C]//2nd International Conference on
[56]  ZHANG Rongling, YANG Yang, WANG Qicai, et al. Bull Chin Ceram
[57]  Soc(in Chinese), 2014, 33(6): 1–6.
[58]  ROEDER C W, BROWN C B. Composite action in concrete filled
[59]  tubes [J]. J Struct Eng, 1999, 125(5): 477–484.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133