全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

以纳米多晶β 沸石为壳的核壳Y 型沸石复合物的制备及表征

DOI: 10.14062/j.issn.0454-5648.2015.05.19

Full-Text   Cite this paper   Add to My Lib

Abstract:

将经过四乙基溴化铵交换后的Y型沸石加入到已预晶化23~117h的β沸石反应混合物中,经二次水热晶化,将组成及合成条件差异巨大的Y型沸石和β沸石成功复合在一起,并得到了以Y型沸石为核、以纳米多晶β沸石为壳的核壳沸石复合物(Y@Nano-β)。研究了Y型沸石的四乙基铵根离子(TEA+)改性、改性Y沸石(TEA-Y)添加量、预晶化时间以及二次水热晶化时间等对Y@Nano-β沸石复合物形成的影响,探讨了Y@Nano-β核@壳沸石复合物的形成和生长机理。结果表明,制备条件对Y@Nano-β沸石复合物的形成影响较大。在β沸石合成体系中,NaY远不及TEA-Y稳定,为得到核壳沸石复合物Y@Nano-β,需要将NaY沸石交换成TEA-Y。控制每18mLβ沸石合成凝胶中加入1gTEA-Y,β沸石的预晶化时间为96h,第二步晶化时间大于75h可以制备出以Y型沸石为核,以晶粒尺寸分布在50~100nm之间的纳米多晶β沸石为壳的复合物。

References

[1]  ? ODEDARIO T, AL-KHATTAF S. Kinetic investigation of benzene
[2]  ethylation with ethanol over USY zeolite in a riser simulator [J]. Ind
[3]  Eng Chem Res, 2010, 49(4): 1642–1651.
[4]  AGOSTINI G, LAMBERTI C, PALIN L, et al. In situ XAS and XRPD
[5]  parametric rietveld refinemend to understand dealumination of Y
[6]  zeolite catalyst [J]. J Am Chem Soc, 2010, 132(2): 667–678 .
[7]  QIN Z, LAKISS L, GILSON J P, et al. Chemical equilibrium
[8]  controlled etching of MFI-type zeolite and its influence on zeolite
[9]  structure, acidity, and catalytic activity [J]. Chem Mater, 2013, 25(14):
[10]  2759–2766.
[11]  ABUDAWOOD R H, ALOTAIBI F M, GARFORTH A A.
[12]  Hydroisomerization of n-heptance over Pt-loaded USY zeolites. Effect
[13]  of steaming, dealumination, and the resulting structure on catalytic
[14]  properties [J]. Ind Eng Chem Res, 2011, 50(17): 9918–9924.
[15]  TRIANTAFILLIDIS C S, EVMIRIDIS N P. Dealuminated H-Y
[16]  zeolites: Influence of the number and type of acid sites on the catalytic
[17]  activity for isopropanol dehydration [J]. Ind Eng Chem Res, 2000,
[18]  39(9): 3233–3240.
[19]  KAO H M, CHEN Y C. 27Al and 19F solid-state NMR studies of zeolite
[20]  H-β dealuminated with ammonium hexafluorosilicate [J]. J Phys Chem
[21]  B, 2003, 107(15): 3367–3375.
[22]  DONK S V, JANSSEN A H, BITTER J H, et al. Generation,
[23]  ZHOU Linlin, YANG Xiaoyi, LI Ping, et al. J Chin Ceram Soc, 2013,
[24]  41(6): 842–847.
[25]  陶章峰, 赵谦, 马艳, 等. 微—介孔结构Y/MCM-48 复合分子筛的
[26]  合成与稳定性[J]. 硅酸盐学报, 2012, 40(10): 1466–1472.
[27]  KONG D J, ZHENG J L, YUAN X H, et al. Fabrication of core/shell
[28]  structure via overgrowth of ZSM-5 layers on mordenite crystals [J].
[29]  Micropor Mesopor Mater, 2009, 119: 91–96.
[30]  characterization and impact of mesopores in zeolite catalysts [J]. Catal
[31]  Rev, 2003, 45(2): 297–319.
[32]  PARKER W O, ANGELIS A D FLEGO C, et al. Unexpected
[33]  destructive dealumination of zeolite beta by silylation [J]. J Phys Chem
[34]  C, 2010, 114(18): 8459–8468 .
[35]  KYOKO K B, YUICHIRO K , TOSHIHIDE K , et al. Quick X-ray
[36]  absorption fine structure studies on the activation process of Ni2P
[37]  supported on K-USY [J]. J Phys Chem C, 2011, 115(15): 7466–7471.
[38]  LUTZ W, TOUFAR H, HEIDEMANN D, et al. Siliceous
[39]  extra-framework species in deanluminated Y zeolites genetrated by
[40]  steaming [J]. Micropor Mesopor Mater, 2007, 104(1/3): 171–178.
[41]  JIA L X, SUN X Y, YE X Q, et al. Core-shell composites of
[42]  USY@Meososilica: Synthesis and application in cracking heavy
[43]  molecules with high liquid yield [J]. Micropor Mesopor Mater, 2013,
[44]  176: 16–24.
[45]  李玉平, 潘瑞丽, 霍全, 等. 一种合成高水热稳定性微孔—介孔复
[46]  合分子筛β 沸石/MCM-41 的新方法[J]. 无机化学学报, 2005,
[47]  21(10): 1455–1459.
[48]  LI Yuping, PAN Ruili, HUO Quan, et al. Chin J Inorg Chem (in
[49]  Chinese), 2005, 21(10): 1455–1459.
[50]  杨冬花, 王新波, 石宝宝, 等. 甲醇定向转化制二甲苯的复合分子
[51]  筛ZSM-5/EU-1 的合成及其应用[J]. 无机材料学报, 2014, 29(4):
[52]  357–363.
[53]  YANG Donghua, WANG Xinbo, SHI Baobao, et al. J Inorg Mater (in
[54]  Chinese), 2014, 29(4): 357–363.
[55]  周琳琳, 杨效益, 李萍, 等. 水热体系合成NaA/X 复合沸石[J]. 硅
[56]  酸盐学报, 2013, 41(6): 842–847.
[57]  TAO Zhangfeng, ZHAO Qian, MA Yan, et al. J Chin Ceram Soc, 2012,
[58]  40(10): 1466–1472.
[59]  张球, 谭薇, 郑家军, 等. 气相转移法制备多孔双相沸石复合物[J].
[60]  无机材料学报, 2014, 29(9): 985–990.
[61]  ZHANG Qiu, Tan Wei, ZHENG Jiajun, et al. J Inorg Mater (in
[62]  Chinese), 2014, 29(9): 985–990.
[63]  BOUIZI Y, MAJANO G, MINTOVA S, et al. Beads comprising a
[64]  hierarchical porous core and a microporous shell [J]. J Phys Chem C,
[65]  2007, 111(12): 4535–4542 .
[66]  BOUIZI Y, ROULEAU L, VALTCHEV V P. Fators controlling the
[67]  formation of core-shell zeolite-zeolite composites [J]. Chem Mater,
[68]  2006, 18(20): 4959–4966 .
[69]  BOUIZI Y, DIAZ I, ROULEAU L, et al. Core-shell zeolite
[70]  microcomposites [J]. Adv Funct Mater, 2005, 15(12): 1955–1960.
[71]  ZHANG X W, GUO Q, QIN B, et al. Structural features of binary
[72]  microporous zeolite composite Y-Beta and its hydrocracking
[73]  performance [J]. Catal Today, 2010, 149(1/2): 212–217.
[74]  ZHENG J J, ZENG Q H, ZHANG Y Y, et al. Hierarchical porous
[75]  zeolite composite with a core-shell structure fabricated using β-zeolite
[76]  crystals as nutrients as well as cores [J]. Chem Mater, 2010, 22(22):
[77]  6065–6074.
[78]  ZHENG J J, ZENG Q H, MA J H, et al. Synthesis of hollow zeolite
[79]  composite spheres by using β-zeolite crystal as template [J]. Chem Lett,
[80]  2010, 39(4): 330–331.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133