全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势

DOI: 10.14062/j.issn.0454-5648.2015.05.12

Full-Text   Cite this paper   Add to My Lib

Abstract:

高延性纤维增强水泥基复合材料(ECC)是近20年发展起来的一种新型纤维增强水泥基复合材料。ECC在受力过程

References

[1]  ? LEUNG C, CHEUNG Y N, ZHANG J. Fatigue enhancement of
[2]  concrete beam with ECC layer [J]. Cem Con Res, 2007, 37(5):
[3]  743–750.
[4]  LI V C. 高延性纤维增强水泥基复合材料的研究进展及应用[J]. 硅
[5]  酸盐学报, 2007, 35(4): 531–536.
[6]  [J]. 土木工程学报, 2008, 41(6): 45–60.
[7]  XU Shilang, LI Hedong. J Chin Civ Eng (in Chinese), 2008, 41(6):
[8]  45–60.
[9]  [J]. Cem Concr Res, 2002, 32(3): 415–423.
[10]  LI V C, Hashida T. Engineering ductile fracture in brittle-matrix
[11]  composites [J]. J Mater Sci Lett, 1993, 12(12): 898–901.
[12]  LI V C. Damage tolerance of engineered cementitious composites [A]
[13]  // Advances in Fracture Research, Proc. 9th ICF Conference on
[14]  Fracture[C], Sydney, Australia, 1997: 619–630.
[15]  1033–1043.
[16]  LI V C, 堀井秀之. From micromechanics to structural
[17]  engineering [J]. J Struct Mech Earthquake Eng, 1993, 10(2):
[18]  37–48.
[19]  YANG E, YANG Y, LI V C. Use of high volumes of fly ash to
[20]  improve ECC mechanical properties and material greenness [J]. ACI
[21]  Mater J, 2007, 104(6): 620-628.
[22]  TAKASHIMA H, MIYAGAI K, HASHIDA T, et al. A design
[23]  approach for the mechanical properties of polypropylene discontinuous
[24]  fiber reinforced cementitious composites by extrusion molding [J]. Eng
[25]  Fracture Mech, 2003, 70(7): 853–870.
[26]  SOE K T, ZHANG Y X, ZHANG L C. Material properties of a new
[27]  hybrid fibre-reinforced engineered cementitious composite [J].
[28]  Construct Build Mater, 2013, 43: 399–407.
[29]  高淑玲, 徐世烺. PVA纤维增强水泥基复合材料拉伸特性试验研
[30]  究[J]. 大连理工大学学报, 2007, 47(2): 233–239.
[31]  GAO Shuling, XU Shilang. J Dalian Univ Technol (in Chinese), 2007,
[32]  47(2): 233–239.
[33]  cemontious composite [J]. J Wuhan Univ Technol-Mater, Sci Ed, 2009,
[34]  24(4): 677–683.
[35]  reinforced cementitious composites[A]// Technology progress and
[36]  engineering application of fiber reinforced concrete-- 11st National
[37]  Conference on fiber reinforced concrete[C]. Beijing, 2006: 27–32.
[38]  庞超明, 孙伟. 高掺量粉煤灰高延性水泥基复合材料的制备和性
[39]  能[J]. 硅酸盐学报, 2009, 37(12): 2071–2077.
[40]  PANG Chaoming, SUN Wei. J Chin Ceram Soc, 2009, 37(12):
[41]  2071–2077.
[42]  田砾, 王飞, 赵铁军, 等. 骨料级配对应变硬化水泥基材料力学性
[43]  能的影响[J]. 青岛理工大学学报, 2010, 31(2): 8–11.
[44]  TIAN Li, WANG Fei, ZHAO Teijun, et al. J Qingdao Technol Univ
[45]  (in Chinese), 2010, 31(2): 8–11.
[46]  张林俊, 宋玉普, 吴智敏. 混凝土轴拉试验轴拉保证措施的研究[J].
[47]  实验技术与管理, 2003, 20(2): 99–101.
[48]  ZHANG Junlin, SONG Yupu, WU Zhimin. Exper Technol Manag,
[49]  2003, 20(2): 99–101.
[50]  顾惠琳, 彭勃. 混凝土单轴直接拉伸应力—应变全曲线试验方
[51]  法[J]. 建筑材料学报, 2003, 6(1): 66–71.
[52]  GU Huilin, PENG Bo. J Build Mater (in Chinese), 2003, 6(1): 66–71.
[53]  STANG H, NAAMAN A E, REINHARDT H W. Scale effects in FRC
[54]  and HPFRCC structural elements [A] //High Performance Fiber
[55]  Reinforced Cementitious Composites [C], Naaman, 2003: 245–258.
[56]  LI V C, WU H C, MAALEJ M, et al. Tensile behavior of
[57]  cement‐based composites with random discontinuous steel fibers [J].
[58]  J Am Ceram Soc, 1996, 79(1): 74–78.
[59]  KUNIEDA M, KAMADA T, ROKUGO K. Size effects on flexural
[60]  failure behavior of ECC members [A] //Proceedings of the JCI
[61]  International Workshop on Ductile Fiber Reinforced Cementitious
[62]  Composites (DFRCC) [C], Tokyo, Japan, 2002: 229–238.
[63]  LI V C, MISHRA D K, WU H. Matrix design for
[64]  pseudo-strain-hardening fibre reinforced cementitious composites [J].
[65]  Mater Struct, 1995, 28(10): 586–595.
[66]  俞家欢,杨楠,赵同峰,等. ECC梁的力学性能试验研究[J]. 工业
[67]  建筑, 2012, 42(S1): 553–557.
[68]  YU Jiahuan, YANG Nan, ZHAO Tongfeng, et al. Indust Construct (in
[69]  Chinese), 2012, 42(S1): 553–557.
[70]  ZHANG J, LEUNG C K, CHEUNG Y N. Flexural performance of
[71]  layered ECC-concrete composite beam [J]. Compos Sci Technol, 2006,
[72]  66(11): 1501–1512.
[73]  饶芳芬. 粉煤灰对超高韧性水泥基复合材料弯曲性能的影响试验
[74]  研究[D]. 大连:大连理工大学, 2008.
[75]  RAO Fenfang. Experimental research on influence of fly ash on
[76]  flexural properties of ultra-high toughness cementitious composite.
[77]  Dalian: Dalian Univ Technol (in Chinese,dissertation), 2008.
[78]  王飞. 应变硬化水泥基复合材料(SHCC)力学性能试验研究[D]. 青
[79]  岛:青岛理工大学, 2010.
[80]  WANF Fei. Research on mechanical properties of strain-hardening
[81]  cement-based composites. Qingdao: Qingdao Univ Technol, 2010.
[82]  SUTHIWARAPIRAK P, MATSUMOTO T. Fiber bridging
[83]  degradation based fatigue analysis of ECC under flexure [J]. J Appl
[84]  Mech, 2003, 6: 1179-1188.
[85]  MATSUMOTO T. Fracture mechanics approach to fatigue life of
[86]  discontinuous fiber reinforced composites [D]. Ann Arbor: University of
[87]  Michigan,1998.
[88]  bridging in fibre-reinforced concrete [J]. Mater Struct, 1993, 26(8):
[89]  486–494.
[90]  SUTHIWARAPIRAK P, MATSUMOTO T, KANDA T. Flexural
[91]  fatigue failure characteristics of an engineered cementitious composite
[92]  and polymer cement mortars [J]. JSCE J Mater. Concr Struc Pavement,2002, 718(57): 121-134.
[93]  李庆华, 徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研
[94]  究进展[J]. 工程力学, 2009, 26(2): 23–67.
[95]  LI Qinghua, XU Shilang. Eng Mech (in Chinese), 2009, 26(2): 23–67.
[96]  俞家欢, 吴琼, 赵同峰. 钢筋增强PP-ECC长柱试验[J]. 沈阳建筑大
[97]  学学报(自然科学版), 2012, 28(4): 619–625.
[98]  YU Jiahuan, WU Qiong, ZHAO Tongfeng. J Shenyang Jianzhu Univ:
[99]  Sci & Technol (in Chinese), 2012, 28(4): 619–625.
[100]  蔡向荣, 徐世烺. PVA-UHTCC单轴受压应力-应变全曲线[A] //第21
[101]  届全国结构工程学术会议[C], 辽宁, 沈阳, 2012: Ⅲ404-Ⅲ407
[102]  CAI Xiangrong, XU Shilang. Full stress-strain curves of PVA-UHTCC
[103]  under uniaxial compression [A] //21st National Congress of Structure
[104]  Engineering[C], Liaoning, Shenyang, 2012: Ⅲ404-Ⅲ407.
[105]  公成旭. 高韧性低收缩纤维增强水泥基复合材料研发[D]. 北京:
[106]  清华大学, 2008.
[107]  GONG Chengxu. Development of high ductile cementitious composite
[108]  with characteristic of low shrinkage (in Chinese,dissertation). Beijing:
[109]  Tsinghua Univ, 2008.
[110]  姜海军. 聚乙烯醇纤维增强水泥基复合材料单轴受压力学性能试
[111]  验研究[D]. 呼和浩特: 内蒙古工业大学, 2009.
[112]  JIANG Haijun. Experimental study on mechanical properties of
[113]  polyvinyl alcohol fiber reinforced cementitious composites under
[114]  uniaxial compression (in Chinese, dissertation). Hohhot: Inner Mongol
[115]  Univ Technol, 2009.
[116]  LI V C, MISHRA D K. 33 MICROMECHANICS OF FIBER EFFECT
[117]  ON THE UNIAXIAL COMPRESSIVE STRENGTH OF
[118]  CEMENTITIOUS COMPOSITES[A] // Fibre Reinforced Cement and
[119]  Concrete: Proceedings of the Fourth International Symposium[C],
[120]  Sheffield, UK, 1992: 400-414.
[121]  ?AHMARAN M, LI V C. De-icing salt scaling resistance of
[122]  mechanically loaded engineered cementitious composites [J]. Cem
[123]  Concr Res,2007, 37(7): 1035–1046.
[124]  LI V C, FISCHER G, KIM Y, et al. Durable link slabs for jointless
[125]  bridge decks based on strain-hardening cementitious composites [R].
[126]  MDOT Research Progress Report, RC-1438, 2003:1-96
[127]  蔡新华. 超高韧性水泥基复合材料耐久性能试验研究[D]. 大连:
[128]  大连理工大学, 2010.
[129]  CAI Xinhua. Experimental research on the durable properties of
[130]  ultra-high toughness cementitious composite (in Chinese,dissertation).
[131]  ZHANG Ju, LIU Shuguang, YAN Changwang, et al. J Chin Ceram
[132]  Soc, 2013(6): 766-771.
[133]  WANG S, LI V C. Engineered cementitious composites with
[134]  (GFRP) reinforced engineered cementitious composite beams [J]. ACI
[135]  Mater J, 2002, 99(1): 11-21.
[136]  FISCHER G, LI V C. Effect of matrix ductility on deformation
[137]  behavior of steel-reinforced ECC flexural members under reversed
[138]  cyclic loading conditions [J]. ACI Struct J, 2002, 99(6): 781-790.
[139]  KESNER K, BILLINGTON S L. Experimental response of precast
[140]  infill panels made with DFRCC [A] //in proceedings, DFRCC Int'l
[141]  Workshop [C], Tayakama, Japan, 2002: 289–298.
[142]  KUNIEDA M, ROKUGO K. Recent progress on HPFRCC in Japan
[143]  Required performance and applications [J]. J Adv Concr Technol, 2006,
[144]  4(1): 19–33.
[145]  LEPECH M D, LI V C. Application of ECC for bridge deck link slabs
[146]  [J]. Mater Struct, 2009, 42(9): 1185–1195.
[147]  Mater, 2014, 57: 163–168.
[148]  LI V C. J Chin Ceram Soc, 2007, 35(4): 531–536.
[149]  徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用
[150]  FISCHER G, LI V C. Effect of fiber reinforcement on the response of
[151]  structural members [J]. Eng Fracture Mech, 2007, 74(1-2): 258–272.
[152]  WANG S, WU C. Tensile strain-hardening behavior of polyvinyl
[153]  alcohol engineered cementitious composite (PVA-ECC) [J]. ACI Mater
[154]  J, 2001, 98(6): 483-492.
[155]  陈婷, 詹炳根. 设计PVA纤维水泥基复合材料的研究进展[J]. 混凝
[156]  土, 2004(11): 3–6.
[157]  CHEN Ting, ZHAN Binggen. Concrete, 2004(11): 3–6.
[158]  LI V C. Engineered cementitious composites—Tailored composites
[159]  through micromechanical modeling [A] //Fiber reinforced concrete:
[160]  present and the future [C], Canada, Montreal, 1998:64 –97.
[161]  LI V C, LEUNG C K. Steady-state and multiple cracking of short
[162]  random fiber composites [J]. J Eng Mech, 1992, 118(11): 2246–2264.
[163]  MATSUMOTO T, SUTHIWARAPIRAK P, KANDA T. Mechanisms
[164]  of multiple cracking and fracture of DFRCC under fatigue flexure [J]. J
[165]  Adv Concr Technol, 2003, 1(3): 299–306.
[166]  徐世烺, 李贺东. 超高韧性水泥基复合材料直接拉伸试验研究[J].
[167]  土木工程学报, 2009, 42(9): 32–41.
[168]  XU Shilang, LI Hedong. J Chin Civ Eng (in Chinese), 2009, 42(9):
[169]  32–41.
[170]  FELEKOGLU B, TOSUN-FELEKOGLU K, RANADE R, et al.
[171]  Influence of matrix flowability, fiber mixing procedure, and curing
[172]  conditions on the mechanical performance of HTPP-ECC [J]. Compos
[173]  Part B: Eng, 2014, 60: 359–370.
[174]  MAALEJ M, QUEK S T, ZHANG J. Behavior of hybrid-fiber
[175]  engineered cementitious composites subjected to dynamic tensile
[176]  loading and projectile impact [J]. J Mater Civ Eng, 2005, 17(2):
[177]  143–152.
[178]  LI V C. Integrated structures and materials design [J]. Mater Struct,
[179]  2007, 40(4): 387–396.
[180]  LI V C. On engineered cementitious composites (ECC) [J]. J Adv
[181]  Concr Technol, 2003, 1(3): 215–230.
[182]  WANG S. Micromechanics based matrix design for engineered
[183]  cementitious composites [D]. Ann Arbor: University of Michigan,
[184]  2005.
[185]  ZHOU J, QIAN S, YE G, et al. Improved fiber distribution and
[186]  mechanical properties of engineered cementitious composites by
[187]  adjusting the mixing sequence [J]. Cem Concr Compos, 2012, 34(3):
[188]  342–348.
[189]  YANG E. Designing added functions in engineered cementitious
[190]  composites [D]. Ann Arbor: University of Michigan, 2008.
[191]  ZHANG J, LI V C. Monotonic and fatigue performance in bending of
[192]  fiber-reinforced engineered cementitious composite in overlay system
[193]  YANG E, LI V C. Strain-rate effects on the tensile behavior of
[194]  strain-hardening cementitious composites [J]. Construct Build Mater,
[195]  2014, 52: 96–104.
[196]  LI V C. Tailoring ECC for special attributes: A review [J]. Int J Concr
[197]  Struct Mater, 2012, 6(3): 135–144.
[198]  刘问. 超高韧性水泥基复合材料动态力学性能的试验研究[D]. 大
[199]  连: 大连理工大学, 2012.
[200]  LIU Wen. Experimental study on dynamic mechanical properties of
[201]  ultra-high toughness cementitious composite (in Chinese,dissertation).
[202]  Dalian: Dalian Univ Technol, 2012.
[203]  KANDA T, LI V C. Practical design criteria for saturated pseudo strain
[204]  hardening behavior in ECC [J]. J Adv Concr Technol, 2006, 4(1):
[205]  59-72.
[206]  FUKUYAMA H, MATSUZAKI Y, NAKANO K, et al. Structural
[207]  performance of beam elements with PVA-ECC [A] // Proc of High
[208]  Performance Fiber Reinforced Cement Composites 3 (HPFRCC 3) [C],
[209]  Naaman, 1999: 531–542.
[210]  LI V C, WU C, WANG S, et al. Interface tailoring for strain-hardeningpolyvinyl alcohol-engineered cementitious composite (PVA-ECC) [J].
[211]  ACI Mater J, 2002, 99(5): 463-472.
[212]  KIM J, KIM J, HA G J, et al. Tensile and fiber dispersion performance
[213]  of ECC (engineered cementitious composites) produced with ground
[214]  granulated blast furnace slag [J]. Cem Concr Res, 2007, 37(7):
[215]  1096–1105.
[216]  TOSUN K, FELEKO?LU B, BARADAN B. Multiple cracking
[217]  response of plasma treated polyethylene fiber reinforced cementitious
[218]  composites under flexural loading [J]. Cem Concr Compos, 2012,
[219]  34(4): 508–520.
[220]  YANG E, LI V C. Strain-hardening fiber cement optimization and
[221]  component tailoring by means of a micromechanical model [J].
[222]  Construct Build Mater, 2010, 24(2): 130–139.
[223]  MALVAR L J, ROSS C A. Review of strain rate effects for concrete in
[224]  tension [J]. ACI Mater J, 1998, 95(6): 735-739.
[225]  YU J H, LI V C. Research on production, performance and fibre
[226]  dispersion of PVA engineering cementitious composites [J]. Mater Sci
[227]  Technol, 2009, 25(5): 651–656.
[228]  WEIMANN M B, LI V C. Hygral behavior of engineered cementitious
[229]  composites (ECC) [J]. Int J Restorat Build d Monuments, 2003, 9(5):
[230]  513–534.
[231]  SAHMARAN M, LI V C. Durability properties of micro-cracked ECC
[232]  containing high volumes fly ash [J]. Cem Concr Res, 2009, 39(11):
[233]  徐世烺. 超高韧性绿色ECC新型材料研究及应用[D]. 大连: 大连理
[234]  工大学, 2007.
[235]  XU Shilang. Research and application of ultra-high toughness green
[236]  ECC. Dalian: Dalian Univ Technol (in Chinese,dissertation), 2007.
[237]  LEUNG C K. Tensile and flexural properties of ultra high toughness
[238]  张君, 公成旭. 高韧性纤维增强水泥基复合材料单轴抗拉性能研
[239]  究[A] //纤维混凝土的技术进展与工程应用——第十一届全国纤维
[240]  混凝土学术会议[C]. 北京, 2006: 27–32.
[241]  ZHANG Jun, GONG Chengxu. Tension behavior of high ductile finer
[242]  CHEUNG Y N. Investigation of concrete components with a
[243]  pseudo-ductile layer [D]. Hong Kong: Hong Kong Univ Technol,
[244]  2004.
[245]  LI V C, STANG H, KRENCHEL H. Micromechanics of crack
[246]  Dalian: Dalian Univ Technol, 2010.
[247]  周伟. 大掺量粉煤灰ECC耐久性试验研究[D]. 哈尔滨: 哈尔滨工业
[248]  大学, 2010.
[249]  ZHOU Wei. Experimental research on durability of engineered
[250]  cementitious composite with high volume fly ash (in Chinese,
[251]  dissertation). Harbin: Harbin Institute of Technology, 2010.
[252]  张菊, 刘曙光, 闫长旺, 等. 氯盐环境对PVA纤维增强水泥基复合
[253]  材料抗冻性的影响[J]. 硅酸盐学报, 2013(6): 766–771.
[254]  high-volume fly ash [J]. ACI Mater J, 2007, 104(3): 233-241.
[255]  MAALEJ M, HASHIDA T, LI V C. Effect of Fiber Volume Fraction
[256]  on the Off-Crack-Plane Fracture Energy in Strain‐Hardening
[257]  Engineered Cementitious Composites [J]. J Am Ceram Soc, 1995,
[258]  78(12): 3369–3375.
[259]  LI V C, WANG S. Flexural behaviors of glass fiber-reinforced polymer
[260]  LI V C, FISCHER G, LEPECH M. Shotcreting with ECC [A] //
[261]  Kusterle W. Proceedings of CD [C], Spritzbeton Tagung, Austria,
[262]  2009:52-60.
[263]  KIM Y Y, FISCHER G, LI V C. Performance of bridge deck link slabs
[264]  designed with ductile engineered cementitious composite [J]. ACI
[265]  Struct J, 2004, 101(6): 792-801.
[266]  ZHANG J, LI V C, NOWAK A S, et al. Introducing ductile strip for
[267]  durability enhancement of concrete slabs [J]. J Mater Civ Eng, 2002,
[268]  14(3): 253–261.
[269]  王铁梦. 工程结构裂缝控制 [M]. 中国建筑工业出版社, 1997:
[270]  220-280.
[271]  LI V C. High performance fiber reinforced cementitious composites as
[272]  durable material for concrete structure repair [J]. Int J Res, 2004, 10(2):
[273]  163–180.
[274]  KAMADA T, LI V C. The effects of surface preparation on the
[275]  fracture behavior of ECC/concrete repair system [J]. Cem Concr
[276]  Compos, 2000, 22(6): 423–431.
[277]  KAN L, SHI H. Investigation of self-healing behavior of engineered
[278]  cementitious composites (ECC) materials [J]. Construct Build Mater,
[279]  2012, 29: 348–356.
[280]  ZWAAG S. Self healing materials: an alternative approach to 20
[281]  centuries of materials science [M]. Springer Science Business Media
[282]  BV, 2008: 151-182.
[283]  HUANG X, RANADE R, NI W, et al. On the use of recycled tire
[284]  rubber to develop low E-modulus ECC for durable concrete repairs [J].
[285]  Construct Build Mater, 2013, 46: 134–141.
[286]  LEE B Y, CHO C, LIM H, et al. Strain hardening fiber reinforced
[287]  alkali-activated mortar–A feasibility study [J]. Construct Build Mater,
[288]  2012, 37: 15–20.
[289]  KAMAL A, KUNEIDA M, UEDA N, et al. Evaluation of crack
[290]  elongation performance of UHP-SHCC as a surface repair material [A]
[291]  //Proceedings of the Creep, Shrinkage, and Durability Mechanics of
[292]  Concrete and Concrete Structures [C], London, UK, 2009: 519–525.
[293]  RANADE R, STULTS M D, LI V C, et al. Development of high
[294]  strength high ductility concrete [A] //Proc 2nd Int’l RILEM
[295]  Conference on Strain Hardening Cementitious Composites (SHCC2)
[296]  [C], Rio de Janeiro, Brazil, 2011: 1–8.
[297]  SCRIVENER K L, KIRKPATRICK R J. Innovation in use and
[298]  research on cementitious material [J]. Cem Concr Res, 2008, 38(2):
[299]  128–136.
[300]  OHNO M, LI V C. A feasibility study of strain hardening fiber
[301]  reinforced fly ash-based geopolymer composites [J]. Construct Build

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133