KIM D, GHICOV A, SCHNUKI P, et al. Bamboo-type TiO2nanotubes: improved conversion efficiency in dye-sensitized solarcells [J]. J Am Chem Soc, 2008, 130(49): 16454–16455.
[2]
KUANG D B, BRILLET J, CHEN P, et al. Application of highlyordered TiO2 nanotube arrays in flexible dye-sensitized solar cells [J].ACS Nano, 2008, 2(6): 1113–1116.
SUN K C, CHEN Y C, KUO M Y, et al. Synthesis and characterizationof highly ordered TiO2 nanotube arrays for hydrogen generation viawater splitting [J]. Mater Chem Phys, 2011, 129(1/2): 35–39.
[5]
LIAO J J, LIN S W, ZHANG L, et al. Photocatalytic degradation ofmethyl orange using a TiO2/Ti mesh electrode with 3-D nanotubearrays [J]. ACS Appl Mater Inter, 2012, 4(1): 171–177.
[6]
ZHANG X X, ZHANG J B, JIA Y L, et al. TiO2 nanotube array sensorfor detecting the SF6 decomposition product SO2 [J]. Sensors, 2012,12(3): 3302–33137.
[7]
WU G Q, ZHANG J W, LI X G, et al. Hierarchical structured TiO2nano-tubes for formaldehyde sensing [J]. Ceram Int, 2012, 38(8):6341–6347.
[8]
ITO S, LISKA P, COMTE P, et al. Control of dark current inphotoelectrochemical (TiO2/I?–I3-) and dye-sensitized solar cells [J].Chem Commun, 2005, (34): 4351–4353.
[9]
HE W Z,QIU J J, KIM H K, et al. Advantages of using Ti-mesh typeelectrodes for flexible dye-sensitized solar cells [J]. Nanotechnol, 2012,23(22): 225602–225607.
[10]
LIU ZH Y, SUBRAMANIA V, MIARA M. Vertically oriented TiO2nanotube arrays grown on Ti meshes for flexible dye-sensitized solarcells [J]. J Phys Chem C, 2009, 113(31): 14028–14033.
[11]
SUN W T, YU Y, PAN H Y, et al. CdS quantum dots sensitized TiO2nanotube-array photoelectrodes [J]. J Am Chem Soc, 2008, 130(4):1124–1125.
[12]
WANG H, BAI Y S, ZHANG H, et al. CdS quantum dots-sensitizedTiO2 nanorod array on transparent conductive glass photoelectrodes [J].J Phys Chem C, 2010, 114(39): 16451–16455.
[13]
YANG L X, LUO S L, XIAO Y, et al. Fabrication of CdSenanoparticles sensitized long TiO2 nanotube arrays for photocatalyticdegradation of anthracene-9-carbonxylic acid under greenmonochromatic light [J]. J Phys Chem C, 2010, 114(11): 4783–4789.
[14]
KANG Q, LIU S H, YANG L, et al. Fabrication of PbSnanoparticle-sensitized TiO2 nanotube arrays and theirphotoelectrochemical properties [J]. ACS Appl Mater Int, 2011, 3(10):746–749.
[15]
TATANATAWANATE C, TAO Y, J R, et al. Photocatalytic activity ofPbS quantum dot/TiO2 nanotube composites [J]. J Phy Chem C, 2009,113(24): 10755–10760.
[16]
LI Y T, CHEN X Y, CHEN Y X, et al. Efficient PbS/CdS co-sensitizedsolar cells based on TiO2 nanorod arrays [J]. Nanoscale Res Lett, 2013,8(1): 1–7.
[17]
LIU C C, LIU Z F, AN L, et al. CdS/PbS co-sensitized ZnO nanorodsand its photovoltaic properties [J]. Appl Surf Sci, 2011, 257(16):7041–7046.
[18]
ZHOU N, CHEN G P, MENG Q B, et al. Highly efficient PbS/CdSco-sensitized solar cells based on photoanodes with hierarchical poredistribution [J]. Elcetrochem Commun, 2012, 20(7): 97–100.
[19]
BORJA J H,VOROBIEV Y V, BON R R. Thin film solar cells ofCdS/PbS chemically deposited by an ammonia-free process [J]. SolEnergy Mater Sol C, 2011, 95(7): 1882–1887.
[20]
OBAID A S, HASSAN Z, MAHDI M A, et al. Fabrication andcharacterisations of n-CdS/p-PbS heterojunction solar cells usingmicrowave-assisted chemical bath deposition [J]. Sol Energy, 2013,89(2): 143–151.
[21]
LEE Y L, CHI C F, LIAU S Y. CdS/CdSe co-sensitized TiO2photoelectrode for efficient hydrogen generation in aphotoelectrochemical cell [J]. Chem Mater, 2009, 22(3): 922–927.