MEHTA P K. Durability of concrete--fifty years of progress?[J]. ACISpec Publ, 1991, 126.
[2]
FELDMAN R F. Pore structure, permeability and diffusivity as relatedto durability [C]. Proceedings of the Eighth International Congress onthe Chemistry of Cement Rio de Janeiro, Brazil, 1986, p336.
[3]
LITOROWICZ A. Identification and quantification of cracks inconcrete by optical fluorescent microscopy[J]. Cem Concr Res, 2006,36(8): 1508–1515.
[4]
BAROGHEL-BOUNY V, MAINGUY M, COUSSY O. Isothermaldrying process in weakly permeable cementitious materialsassessmentof water permeability [C]//R.D. H, M.D.A. T and J. M ed.Materials science of concrete, Special volume: ‘Ion and mass transportin cement-based materials’ , American Ceramic Society, 2011: 59–80.
[5]
ISHIDA T, MAEKAWA K, KISHI T. Enhanced modeling of moistureequilibrium and transport in cementitious materials under arbitrarytemperature and relative humidity history [J]. Cem Concr Res, 2007,37(4): 565–578.
[6]
HANSEN K K, BAROGHEL-BOUNY V, QUENARD D, et al. Watervapor absorption isotherms for porous building materials[C]. Proc. ofInt. Symp. On Moisture Problems in Building Walls, sept. 11–13, Porto,Portugal, 1995:248–257.
[7]
ESPINOSA R M, FRANKE L. Influence of the age and drying processon pore structure and sorption isotherms of hardened cement paste [J].Cem Concr Res, 2006, 36(10): 1969–1984.
[8]
VAN-GENUCHENTEN M T. A closed-form equation for predictingthe hydraulic conductivity of unsaturated soils [J]. Soil Sci Soc Am J,1980, 44(5): 892–898.
[9]
BAROGHEL-BOUNY V. Water vapor sorption experiments onhardened cementitious materials PartⅠ: Essential tool for analysis ofhygral behaviour and its relation to pore structure [J]. Cem Concr Res,2007, 37: 414–437.
[10]
VRIES D A, KRUGER A. On the value of the diffusion coefficient ofwater vapor in air. Proc. du Colloque international du CNRS No.160:Phenomenes de transport avec changement de phase dans les millieuxporux ou clloidaux, CNRS editor, April 18–20, 1966:61-72.
[11]
MILLINGTON R J. Gas diffusion in porous media [J]. Sci, 1959,130(3367): 100–102.
[12]
DANGLA P. Bil2.0: A modeling platform based on finite volumeelement methods, http://perso.lcpc.fr/dangla.patrick/bil.
[13]
PICANDET V, KHELIDJ A, BELLEGOU H. Crack effects on gas andwater permeability of concretes[J]. Cem Concr Res, 2009, 39(6):537–547.
[14]
REINHARDT H W, JOOSS M. Permeability and self-healing ofcracked concrete as a function of temperature and crack width [J]. CemConcr Res, 2003, 33(7): 981–985.
[15]
PICANDET V, KHELIDJ A, BELLEGOU H. Crack effects on gas andwater permeability of concretes[J]. Cem Concr Res, 2009, 39(6):537–547.
[16]
WANG K, JANSEN D C, SHAH S P, et al. Permeability study ofcracked concrete[J]. Cem Concr Res, 1997, 27(3): 381–393.
[17]
ZHOU C, LI K, HAN J. Characterizing the effect of compressivedamage on transport properties of cracked concretes [J]. Mater Struct,2012, 45(3): 381–392.
[18]
TORRIJOS M C, GIACCIO G, ZERBINO R. Internal cracking andtransport properties in damaged concretes [J]. Mater Struct, 2010,43(1): 109–121.
[19]
ZHOU C, LI K, PANG X. Geometry of crack network and its impacton transport properties of concrete [J]. Cem Concr Res, 2012, 42(9):1261–1272.
[20]
ZHOU C, LI K. Transport properties of concrete altered bycrack-induced damage[J]. J Mater Civ Eng, 2013, A4014001.
[21]
RINGOT E, BASCOUL A. About the analysis of microcracking inconcrete[J]. Cem Concr Compos, 2001, 23(2): 261–266.