ALIGIZAKI K K. Pore Structure of Cement-based Materials: Testing,Interpretation and Requirement [M]. New York: Taylor &Francis, 2006:108–167.
[2]
DANGLAP B. A modeling platform based on finite volume/elementmethods, 2014. http://perso.lcpc.fr/dangla.patrick/bil.
[3]
? BAROGHEL-BOUNY V. Water vapour sorption experiments onhardened cementitious materials PartⅠ: Essential tool for analysis ofhygral behaviour and its relation to pore structure [J]. Cem Concr Res,2007, 37: 414–437.
[4]
RANAIVOMANANA H, VERDIER J, SELLIER A, et al. Toward abetter comprehension and modeling of hysteresis cycles in the watersorption–desorption process for cement based materials [J]. Cem ConcrRes, 2011, 41: 817–827.
[5]
LI K, LI C, CHEN Z. Influential depth of moisture transport inconcrete subject to drying–wetting cycles [J]. Cem Concr Compos,2009, 31:693–698.
[6]
ZENG Q, WANG Y, LI K. Uniform model for moisture transport inporous materials and its application to concrete at selected Chineseregions [J]. Mater Civ Eng, 2014: 26(6): 05014001.
[7]
BAROGHEL-BOUNY V. Water vapour sorption experiments onhardened cementitious materials. Part II: Essential tool for assessmentof transport properties and for durability prediction [J]. Cem Concr Res,2007, 37: 438–454.
[8]
BAROGHEL-BOUNY V, MAINGUY M, LASSABATERE T, et al.Characterization and identification of equilibrium and transfer moistureproperties for ordinary and high-performance cementitious materials[J]. Cem Concr Res, 1999, 29: 1225–1238.
[9]
MUALEM Y. A new model for predicting the hydraulic conductivity ofunsaturated porous media [J]. Water Resour Res, 1976, 12(3): 513–522.
[10]
BAROGHEL-BOUNY V, MAINGUY M, COUSSY O. Isothermaldrying process in weakly permeable cementitious materials-assessmentof water permeability [C]//Materials science of concrete, Specialvolume: ‘Ion and mass transport in cement-based materials’ , AmericanCeramic Society, 2011: 59–80.
[11]
KAMECHE Z A, GHOMARI F, CHOINSKA M, et al. Assessment ofliquid water and gas permeabilities of partially saturated ordinaryconcrete [J]. Construct Build Mater, 2014, 65: 551–565.
[12]
BASHIRI H. Desorption kinetics at the solid/solution interface: Atheoretical description by statistical 277 rate theory forclose-to-equilibrium systems [J]. Phys Chem C, 2011, 115: 5732–5739.
[13]
PLAZINSKI W, RUDZINSKI W, PLAZINSKA A. Theoretical modelsof sorption kinetics including a surface reaction mechanism:A review[J]. Adv Colloid Interface Sci, 2009, 152: 2–13.
COUSSY O, BAROGHEL-BOUNY V, DANGLA P, et al. Assessmentof the water permeability of concretes from their mass loss duringdrying (in French) [C]//BAROGHEL-BOUNY V ed. Transfertsdans lesbétons etdurabilité, Special issue of Revue Fran?aise de Génie Civil,vol. 5, Hermès Science Publications, Paris, 2001: 269–284, n 2–3.
[16]
ZBYSEK P, JAROMIR Z, IGOR M, et al. Water vapor adsorption inporous building materials: Experimental measurement and theoreticalanalysis [J]. Transp Porous Med, 2012, 91: 939–954.
[17]
VAN GENUCHTEN M. A closed-form equation for predicting thehydraulic conductivity of unsaturated soils[J]. Soil Sci Soc Am, 1980,44: 892–898.
[18]
MAINGUY M. Modeling of isothermal moisture transport in porousmedia. Application to the drying of cement-based materials[D]. Paris,France: Ecole Nationale des Pontset Chaussees, 1999.
[19]
MAINGUY M, COUSSY O, BAROGHEL-BOUNY V. Role of airpressure in drying of weakly permeable materials [J]. J Eng Mech,2001, 127(6): 582–592.
[20]
张东东, 庞晓贇, 李克非. 水泥基孔隙材料水蒸气等温吸附与脱附过程[J]. 硅酸盐学报, 2015, 43(5): 545–554.ZHANG Dongdong, PANG Xiaoyun, LI Kefei. Chin Ceram Soc , 2015,43(5): 545–554.