全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ce 掺杂对0.85Bi4Ti3O12-0.15LiNbO3 铋层状压电陶瓷电性能的影响

DOI: 10.14062/j.issn.0454-5648.2015.09.06

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用固相法制备0.85Bi4Ti3O12-0.15LiNbO3-0.75%CeO2(BTO-LN-0.75Ce)铋层状压电陶瓷。通过阻抗谱研究不同温度和频率对样品电性能的影响。结果表明介电常数ε*的实部ε′和虚部ε″在低频区域出现分散现象;随频率增大,阻抗(Z*)的实部Z′值逐渐减小,而虚部Z″值先增大后减小。阻抗Cole-Cole图表明晶粒内部对电传导过程起主要作用,并可用一个并联电阻–电容电路等效。陶瓷样品的阻抗值随温度的升高而减小,电导率值在低频区域相对稳定,且电导率满足Arrhenius关系,说明陶瓷样品的电导是热激活的过程。BTO-LN-0.75Ce的电导活化能小于BTO-LN的电导活化能,分别为1.5919和1.7562eV。

References

[1]  PAZ DE ARAUJO C A, CUCHLARO J D, MCMILLAN L D, et al.Fatigue-free ferroelectric capacitors with platinum electrodes[J].Nature, 1995, 374: 627–629.
[2]  JIANG X P, YANG Q, CHEN C, et al. Nb-modified Bi4Ti3O12piezoelectric for high temperature applications [J]. Inorg Mater, 2010,25(11): 1169–1174.
[3]  TAO J, YI Z G, LIU Y, et al. Dielectric tunability, dielectric relaxation,and impedance spectroscopic studies on (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3lead-free ceramics[J]. J Am Ceram Soc, 2013, 96(6): 1847–1851.
[4]  LIU L J, HUANG Y M, LI Y H, et al. Oxygen-vacancy-relatedhigh-temperature dielectric relaxation and electrical conduction in0.95K0.5Na0.5NbO3–0.05BaZrO3 ceramic[J]. Phys B, 2012, 407:136–139.
[5]  DASH U, SAHOO S, CHAUDHURI P, et al. Electrical properties ofbulk and nano Li2TiO3 ceramics: A comparative study[J]. J Adv Ceram,2014, 3(2): 89–97.
[6]  WEI X Y, WAN X, YAO X. Dielectric relaxation in paraelectric phaseof Ba(Ti,Sn)O3 ceramics[J]. J Electroceram, 2008, 21: 226–229.
[7]  LI C C, WEI X Y. Complex impedance analysis on a layeredperovskite-like ceramic: La3Ti2TaO11[J]. J Mater Sci, 2012, 47:4200–4204.
[8]  JIANG X P, YANG F, CHEN C, et al. Microstructure and electrical propertiesof cerium-modified bismuth-layer 0.85Bi4Ti3O12-0.15LiNbO3 piezoelectricceramics[J]. J Chin Ceram Soc, 2014, 42(12): 1501–1506.
[9]  JONSCHER A K. Low frequency dispersion in carrier-dominateddielectrics[J]. Philos Mag B, 1978, 38: 587–601.
[10]  JONSCHER A K, DUBE D C. Low frequency dispersion in tri-glycynesulphate[J]. Ferroelectrics, 1977, 17: 533–536.
[11]  ZHIGAO L, BONNET J P, RAVEZ J, et al. Correlation between lowfrequency dielectric dispersion (LFDD) and impedance relaxation inferroelectric ceramic: Pb2KNb4TaO15[J]. Solid State Ion, 1992, 57:235–244.
[12]  NEALON T A. Low-frequency dielectric response in PMN-typeceramics[J]. Ferroelectrics, 1987, 76: 377–382.
[13]  PENG Z H, CHEN Q, LIU D, et al. Evolution of microstructure anddielectric properties of (LiCe)-doped Na0.5Bi2.5Nb2O9 Aurivillius typeceramics[J]. Curr Appl Phys, 2013, (13): 1183–1187.
[14]  RAO K S, PRASAD D M, KRISHNA P M, et al. Frequency and temperature dependence of electrical properties of barium andgadolinium substituted SrBi2Nb2O9 ceramics[J]. J Mater Sci, 2007, 42:7363–7374.
[15]  KAJEWSKI D, UJMA Z. Electrical properties of SrBi2(Nb0.5Ta0.5)2O9ceramics[J]. J Phys Chem Solids, 2010, 71: 24–29.
[16]  TAWICHAI N, SUTJARITTANGTHAM K, TUNKASIRI T, et al.Dielectric dispersion and impedance spectroscopy of Bi3+-dopedBa(Ti0.9Sn0.1)O3 ceramics [J]. Ceram Int, 2013, 39: S145–S148.
[17]  COONDOO I, PANWAR N, TOMAR A, et al. Impedancespectroscopy and conductivity studies in SrBi2(Ta1-xWx)2O9ferroelectric ceramics[J]. Physica B, 2012, 407: 4712–4720.
[18]  CHAUDHARI V A, BICHILE G K. Structural and impedancespectroscopic studies on PbZrxTi1?xO3 ceramics[J]. Phys B, 2010, 405:534–539.
[19]  SHANNON R D, Revised effective ionic radii and systematic studiesof interatomic distances in halides and chalcogenides[J]. Acta Cryst A,1976, 32: 751–767.
[20]  ANG C, YU Z, JING Z, et al. Piezoelectric and electrostrictive strainbehavior of Ce-doped BaTiO3 ceramics[J]. Appl Phys Lett, 2002, 80:3424–3426.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133