全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Y2O3 和TiO2 对Mg4.68Al2.64Zr1.68O12 合成的影响

DOI: 10.14062/j.issn.0454-5648.2015.09.17

Full-Text   Cite this paper   Add to My Lib

Abstract:

以分析纯的MgO、烧结尖晶石、活性α-Al2O3、电熔单斜氧化锆为原料,采用淬冷法研究了Y2O3和TiO2对Mg4.68Al2.64Zr1.68O12合成的影响。结果表明当温度为1710℃,Mg4.68Al2.64Zr1.68O12的合成优先于Y2O3、TiO2在ZrO2中的固溶,ZrO2固溶体须脱溶出Y2O3、TiO2,才能参与Mg4.68Al2.64Zr1.68O12的反应,其稳定性与Mg4.68Al2.64Zr1.68O12的合成率呈反比。Y2O3质量分数小于1.0%时对Mg4.68Al2.64Zr1.68O12的合成影响不大,超过1.5%时不利于Mg4.68Al2.64Zr1.68O12的合成,但却有利于试样的致密化及ZrO2晶粒细化。TiO2较Y2O3稳定ZrO2的效果差,其能同时促进Mg4.68Al2.64Zr1.68O12的合成及晶粒长大,其加入量以1.0%质量分数为佳。

References

[1]  CRITES M D, KARAKUS M, SCHLESINGER M E, et al. Interactionof chrome-free refractories with copper smelting and convertingslags[J]. Can Metall Q, 2000, 39(2): 129–134.
[2]  KARAKUS M, CRITES M D, SCHLESINGER M E.Cathodoluminescence microscopy characterization of chrome-freerefractories for copper smelting and converting furnaces[J]. J Microsc,2000, 200(1): 50–58.
[3]  PETKOV V, JONES T, BOYDENS E, et al. Chemical corrosionmechanisms of magnesia–chromite and chrome-free refractory bricksby copper metal and anode slag[J]. J Eur Ceram Soc, 2007, 27(6):2433–2444.
[4]  CEYLANTEKIN R, AKSEL C. Improvements on the mechanicalproperties and thermal shock behaviors of MgO-spinel compositerefractories by ZrO2 incorporation[J]. Ceram Int, 2012, 38(2): 995–1002.
[5]  SAHIN B, AKSEL C. Developments on the mechanical properties ofMgO–MgAl2O4 composite refractories by ZrSiO4–3mol% Y2O3addition [J]. J Eur Ceram Soc, 2012, 32(1): 49–57.
[6]  孙加林, 洪彦若, 窦叔菊. MgO–Al2O3–ZrO2 质耐火材料的显微结构分析[J]. 耐火材料, 1996, 30(5): 255–258.SUN Jialin, HONG Yanro, DOU Shuju. Refractories (in Chinese),1996, 30(5): 255–258.
[7]  KOZLOVA O B, SUVOROV S A. The wetting of refractories of theMgO-Al2O3-ZrO2 system with metal melts[J]. Refractories, 1976, 17(11/12): 763–767.
[8]  尹国祥, 李勇, 孙加林, 等. 热处理温度对MgO-MgAl2O4-ZrO2 共晶材料力学性能的影响[J]. 硅酸盐学报, 2014, 42(3): 366–371.YIN Guoxiang, LI Yong, SUN Jialin, et al. J Chin Ceram Soc, 2014,42(3): 366–371.
[9]  TASSOT P, KOENING G, F. SEIFERT F A, et al. Subsolidus, hightemperature phase relations in the systems Al2O3–Cr2O3–ZrO2,MgO–Cr2O3–ZrO2, and MgO–Al2O3–ZrO2 [J]. J Mater Sci, 1986,21(10): 3479–3482.
[10]  TASSOT P, KOENING G, LIEBAU F, et al. A new magnesiumaluminium zirconium oxide, Mg5+xAl2.4–xZr1.7+0.25xO12 with–0.4≤x≤0.4[J]. J Appl Crystallogr, 1983, 16(6): 649.
[11]  PAVLYUCHKOV D, SAVINYKH G, Fabrichnaya O. Experimentalinvestigation and thermodynamic modeling of the ZrO2–MgO–Al2O3system[J]. J Eur Ceram Soc, 2014, 34(5): 1397–1408.
[12]  尹国祥, 李勇, 孙加林, 等. Mg4.68Al2.64Zr1.68O12 的合成机理[J]. 硅酸盐学报, 2013, 41(9): 1271–1277.YIN Guoxiang, LI Yong, SUN Jialin, et al. J Chin Ceram Soc, 2013,41(9): 1271–1277.
[13]  LODHA R, OPREA G, TROCZYNSKI T. Role of Ti4+ and Sn4+ ions inspinel formation and reactive sintering of magnesia-rich ceramics[J].Ceram Int, 2011, 37(2): 465–470.
[14]  SARKAR R, BANNERJEE G. Effect of addition of TiO2 on reactionsintered MgO–Al2O3 spinels[J]. J Eur Ceram Soc, 2000, 20(12):2133–2141.
[15]  JIN Z P, DU Y. Thermodynamic calculation of the ZrO2-YO1.5-CaOphase diagram[J]. CALPHAD, 1992, 16(4): 355–362.
[16]  DU Y, JIN Z P, Huang P Y. Calculation of ZrO2-CaO-MgO phasediagram[J]. CALPHAD, 1992, 16(3): 221–230.
[17]  SCHAEDLER T A, FABRICHNAYA O, LEVI C G. Phase equilibria inthe TiO2-YO1.5-ZrO2 system[J]. J Eur Ceram Soc, 2008, 28(13):2509–2520.
[18]  Du Y, JIN Z P, HUANG P Y. Thermodynamic calculation of thezirconia-calcia system[J]. J Am Ceram Soc, 1992, 75(11): 3040–3048.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133