全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水泥基材料气体渗透性研究进展

DOI: 10.14062/j.issn.0454-5648.2015.10.21

Full-Text   Cite this paper   Add to My Lib

Abstract:

综述了水泥基材料气体渗透机理、渗透性测试原理与方法以及气体渗透性的预测模型。气体在水泥基孔隙材料中的渗流过程包括粘性流动、边界滑流以及Knudsen扩散。水泥基材料的透气性测试分为常压流量法、变压流量法以及变压压力法。水泥基材料通过物理孔隙结构和孔隙含水率影响气体渗透性。现有文献表明气体渗流规律缺少关于对纳米尺度上Knudsen扩散对整体渗流总体贡献的定量研究,使气体渗透性与材料微观结构的模型的适用性受到影响;常压流量法物理原理明确,是实验室测量气体渗透性的标准方法,其他方法需要与之比对来确定其有效性;水泥基材料孔隙结构影响气体渗透性的关键参数是孔隙率和渗流特征尺寸,相关模型对水泥净浆适用性较好,但对砂浆和混凝土较差;水泥基材料孔隙含水率与气体渗透性的关系可通过Van-Genuchten-Mualem模型来表达,但模型参数离散性较大。

References

[1]  KNUDSEN M. Effusion and the molecular flow of gases throughopenings [J]. Ann Phys, 1909, 29(179): 93–179.
[2]  DULLIEN F A L. Porous media: fluid transport and pore structure [M].San Diego: Academic Press, 1992: 288–291.
[3]  KLINKENBERG L J. The permeability of porous media to liquids andgases [C]//Drilling and Production Practice, New York, 1941: 200–213.
[4]  MEHTA P K. Pore size distribution and permeability of hardenedcement pastes [C]//7th International Congress on the Chemistry ofCement, Paris, 1980: 1–5.
[5]  MUALEM Y. A new model for predicting the hydraulic conductivityof unsaturated porous media [J]. Water Resour Res, 1976, 12(3):513–522.
[6]  TANG S W, LI Z J, ZHU H G, et al. Permeability interpretation foryoung cement paste based on impedance measurement [J]. ConstrBuild Mater, 2014, 59: 120–128.
[7]  BREYSSE D, GéRARD B. Modelling of permeability incement-based materials: Part 1-Uncracked medium [J]. Cem Concr Res,1997, 27(5): 761–775.
[8]  MONLOUIS-BONNAIRE J P, VERDIER J, PERRIN B. Prediction ofthe relative permeability to gas flow of cement-based materials [J].Cem Concr Res, 2004, 34(5): 737–744.
[9]  American Society for the Testing of Materials. D4525-13 Standard testmethod for permeability of rocks by flowing air [S].
[10]  KOLLEK J J. The determination of the permeability of concrete tooxygen by the Cembureau method—a recommendation [J]. MaterStruct, 1989, 22(3): 225–230.
[11]  RILEM T C. 116-PCD. Permeability of concrete as a criterion of itsdurability [J]. Mater Struct, 1999, 32(4): 174–179.
[12]  CARE S, DERKX F. Determination of relevant parameters influencinggas permeability of mortars [J]. Constr Build Mater, 2011, 25(3):1248–1256.
[13]  KEARSLEY E P, WAINWRIGHT P J. Porosity and permeability offoamed concrete [J]. Cem Concr Res, 2001, 31(5): 805–812.
[14]  王中平, 吴科如,张青云,等. 混凝土气体渗透系数测试方法的研究[J]. 建筑材料学报, 2001, 4(4): 317–321.WANG Zhongping, WU Keru, ZHANG Qingyun, et al. J Build Mater(in Chinese), 2001, 4(4): 317–321.
[15]  王中平, 吴科如, 阮世光. 单轴压缩作用对混凝土气体渗透性的影响[J]. 建筑材料学报, 2001, 4(2): 127–131.WANG Zhongping, WU Keru, RUAN Shiguang. J Build Mater (inChinese), 2001, 4(2): 127–131.
[16]  王中平, 王振. 混凝土导电量与气体渗透系数的相关性[J]. 建筑材料学报, 2010, 13(1): 80–84.WANG Zhongping, WANG Zhen. J Build Mater (in Chinese), 2010,13(1): 80–84.
[17]  施惠生, 许碧莞, 阚黎黎. 矿渣微粉对混凝土气体渗透性及强度的影响[J]. 同济大学学报: 自然科学版, 2008, 36(6): 782–786.SHI Huisheng, XU Biwan, KAN Lili. J Tongji Univ: Nat Sci (inChinese), 2008, 36(6): 782–786.
[18]  施惠生, 许碧莞. 粉煤灰高性能混凝土气体渗透性能研究[J]. 同济大学学报: 自然科学版, 2007, 35(9): 1230–1234.SHI Huisheng, XU Biwan. J Tongji Univ: Nat Sci(in Chinese), 2007,35(9): 1230–1234.
[19]  PICANDET V, KHELIDJ A, BELLEGOU H. Crack effects on gas andwater permeability of concretes [J]. Cem Concr Res, 2009, 39(6):537–547.
[20]  ZENG Q, LI K F, FEN-CHONG T, et al. Pore structurecharacterization of cement pastes blended with high-volume fly-ash [J].Cem Concr Res, 2012, 42(1): 194–204.
[21]  WARDEH G, PERRIN B. Relative permeabilities of cement-basedmaterials: influence of the tortuosity function [J]. J Build Phys, 2006,30(1): 39–57.
[22]  HUNT A, EWING R. Percolation theory for flow in porous media [M].Berlin: Springer-Verlag, 2009: 169–173.
[23]  ABBAS A, CARCASSES M, OLLIVIER J P. Gas permeability ofconcrete in relation to its degree of saturation [J]. Mater Struct, 1999,32(1): 3–8.
[24]  ROMER M. Effect of moisture and concrete composition on the Torrentpermeability measurement [J]. Mater Struct, 2005, 38(5): 541–547.
[25]  罗明勇. 大掺量矿渣水泥基材料孔隙结构与透气性研究[D]. 北京:清华大学, 2013.LUO Mingyong. Pore structure characterization and gas permeabilityof cement-based materials containing high volume of GGBS (inChinese, dissertation). Beijing: Tsinghua University, 2010.
[26]  罗明勇, 桂强, 李克非. 孔隙结构及饱水度对水泥基材料透气性的影响[J]. 硅酸盐学报, 2014, 42(8): 24–30.LUO Mingyong, GUI Qiang, LI Kefei. J Chin Ceram Soc, 2014, 42(8):24–30.
[27]  KAMECHE Z A, GHOMARI F, CHOINSKA M, et al. Assessment ofliquid water and gas permeabilities of partially saturated ordinaryconcrete [J]. Constr Build Mater, 2014, 65: 551–565.
[28]  TSIVILIS S, CHANIOTAKIS E, BATIS G, et al. The effect of clinkerand limestone quality on the gas permeability, water absorption andpore structure of limestone cement concrete [J]. Cem Concr Comp,1999, 21(2): 139–146.
[29]  LAFHAJ Z, GOUEYGOU M, DJERBI A, et al. Correlation betweenporosity, permeability and ultrasonic parameters of mortar withvariable water/cement ratio and water content [J]. Cem Concr Res,2006, 36(4): 625–633.
[30]  ?ALOGOVI? V. Gas permeability measurement of porous materials(concrete) by time-variable pressure difference method [J]. Cem ConcrRes, 1995, 25(5): 1054–1062.
[31]  HAMAMI A A, TURCRY P, A?T-MOKHTAR A. Influence of mixproportions on microstructure and gas permeability of cement pastesand mortars [J]. Cem Concr Res, 2012, 42(2): 490–498.
[32]  Duracrete. Compliance testing for probabilistic designpurposes-evaluation report [R]. Contract BRPRCT95-0132, ProjectBE95-1347, Document BE95-1347/R7. The Netherlands.
[33]  TORRENT R, DENARIé E, JACOBS F, et al. Specification and sitecontrol of the permeability of the cover concrete: the Swiss approach[J]. Mater Corros, 2012, 63(12): 1127–1133.
[34]  LOOSVELDT H, LAFHAJ Z, SKOCZYLAS F. Experimental study ofgas and liquid permeability of a mortar [J]. Cem Concr Res, 2002,32(9): 1357–1363.
[35]  PERLOT C, VERDIER J, CARCASSèS M. Influence of cement typeon transport properties and chemical degradation: Application tonuclear waste storage [J]. Mater Struct, 2006, 39(5): 511–523.
[36]  VAN DEN HEEDE P, GRUYAERT E, DE BELIE N. Transportproperties of high-volume fly ash concrete: capillary water sorption,water sorption under vacuum and gas permeability [J]. Cem ConcrComp, 2010, 32(10): 749–756.
[37]  PICANDET V, KHELIDJ A, BASTIAN G. Effect of axial compressivedamage on gas permeability of ordinary and high-performanceconcrete [J]. Cem Concr Res, 2001, 31(11): 1525–1532.
[38]  DJERBI TEGGUER A, BONNET S, KHELIDJ A, et al. Effect ofuniaxial compressive loading on gas permeability and chloridediffusion coefficient of concrete and their relationship [J]. Cem ConcrRes, 2013, 52: 131–139.
[39]  YANG K, BASHEER P A M, BAI Y, et al. Development of a new insitu test method to measure the air permeability of high performanceconcretes [J]. NDT & E Int, 2014, 64: 30–40.
[40]  BOEL V, AUDENAERT K, DE SCHUTTER G. Gas permeability andcapillary porosity of self-compacting concrete [J]. Mater Struct, 2008,41(7): 1283–1290.
[41]  CHEN W, LIU J, BRUE F, et al. Water retention and gas relativepermeability of two industrial concretes [J]. Cem Concr Res, 2012,42(7): 1001–1013.
[42]  CARMAN P C. Fluid flow through granular beds [J]. Trans Inst ChemEng, 1937, 15: 150–166.
[43]  DULLIEN F A L. New network permeability model of porous media[J]. Aiche J, 1975, 21(2): 299–307.
[44]  KOPLIK J. Creeping flow in two-dimensional networks [J]. J Fluid Mech, 1982, 119: 219–247.
[45]  LUNDGREN T S. Slow flow through stationary random beds andsuspensions of spheres [J]. J Fluid Mech, 1972, 51(2): 273–299.
[46]  NYAME B K, ILLSTON J M. Relationships between permeability andpore structure of hardened cement paste [J]. Mag Concrete Res, 1981,33(116): 139–146.
[47]  HALAMICKOVA P, DETWILER R J, BENTZ D P, et al. Waterpermeability and chloride ion diffusion in Portland cement mortars:relationship to sand content and critical pore diameter [J]. Cem ConcrRes, 1995, 25(4): 790–802.
[48]  DELAGRAVE A, BIGAS J P, OLLIVIER J P, et al. Influence of theinterfacial zone on the chloride diffusivity of mortars [J]. Adv CemBased Mater, 1997, 5(3): 86–92.
[49]  SHI C J. Effect of mixing proportions of concrete on its electricalconductivity and the rapid chloride permeability test (ASTM C1202 orASSHTO T277) results [J]. Cem Concr Res, 2004, 34(3): 537–545.
[50]  WONG H S, ZOBEL M, BUENFELD N R, et al. Influence of theinterfacial transition zone and microcracking on the diffusivity,permeability and sorptivity of cement-based materials after drying [J].Mag Concr Res, 2009, 61(8): 571–589.
[51]  THIERY M, BAROGHEL-BOUNY V, BOURNETON N, et al.Modélisation du séchage des bétons: analyse des différents modes detransfert hydrique [J]. Revue Européenne de Génie Civil, 2007, 11(5):541–577.
[52]  POYET S, CHARLES S, HONORé N, et al. Assessment of theunsaturated water transport properties of an old concrete:Determination of the pore-interaction factor [J]. Cem Concr Res, 2011,41(10): 1015–1023.
[53]  C LEECH, D LOCKINGTON, RD HOOTON, et al. Validation ofMualem's conductivity model and prediction of saturated permeabilityfrom sorptivity [J]. ACI Mater, 2008, 105(1): 44–51.
[54]  RANAIVOMANANA H, VERDIER J, SELLIER A, et al. Predictionof relative permeabilities and water vapor diffusion reduction factor forcement-based materials [J]. Cem Concr Res, 2013, 48: 53–63.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133