CALDERON N R, MARTINEZ E M, NARCISO J, et al. Thecombined effect of porosity and reactivity of the carbon preforms onthe properties of SiC produced by reactive infiltration with liquid Si [J].Carbon, 2009, 47(9): 2200–2210.
[2]
WANG Y X, TAN S H, JIANG D L. The effect of porous carbonpreform and the infiltration process on the properties ofreaction-formed SiC [J]. Carbon, 2004, 42(8/9): 1833–1839.
[3]
CHAKRABARTI O, DAS P K. Reactive infiltration of Si-Mo alloyedmelt into carbonaceous preforms of silicon carbide [J]. J Am CeramSoc, 2000, 83(6): 1548–1550.
[4]
AROATI S, CAFRI M, DILMAN H, et al. Preparation of reactionbonded silicon carbide (RBSC) using boron carbide as an alternativesource of carbon [J]. J Eur Ceram Soc, 2011, 31(5): 841–845.
[5]
ZHANG Y M, LI S, HAN J C, et al. Fabrication and characterizationof random chopped fiber reinforced reaction bonded silicon carbidecomposite [J]. Ceram Int, 2012, 38(2): 1261–1266.
[6]
KIM H W, KIM H E, SONG H, et al. Effect of oxidation on theroom-temperature flexural strength of reaction-bonded siliconcarbides [J]. J Am Ceram Soc, 1999, 82(6): 1601–1604.
[7]
FAN Z G, SONG Y Z, LI J G, et al. Oxidation behavior of fine-grainedSiC–B4C/C composites up to 1400 ℃[J]. Carbon, 2003, 41(3):429–436.
[8]
KIM Y W, CHUN Y S, NISHIMURA T, et al. High-temperaturestrength of silicon carbide ceramics sintered with rare-earth oxide andaluminum nitride [J]. Acta Mater, 2007, 55(2): 727–736.
[9]
LIU S F, ZENG Y P, JIANG D L. Fabrication and properties of poroussilicon carbides ceramics by an in-situ oxidizing reaction [J]. J ChinCeram Soc, 2008, 36(5): 597–601
[10]
ZHENG C W, YANG Z M, ZHANG J S. The high-temperatureoxidation behavior of reaction-bonded porous silicon carbide ceramicsin dry oxygen [J]. J Am Ceram Soc, 2010, 93(7): 2062–2067.
[11]
ZHANG Y M, ZHANG Y L, HAN J C, et al. The effect of annealingtemperature on micro-structure and mechanical properties of C/SiCcomposites [J]. Mat Sci Eng A, 2008, 497(1-2): 383–387.
[12]
SURESH K R, SIVAKUMAR D, GANDHI A S. Effect ofmolybdenum disilicide additions on the oxidation behaviour of siliconcarbide [J]. Scripta Mater, 2012, 66(7): 451–454.
[13]
WILHELM M, KORNFELD M, WRUSS W. Development of SiC-Sicomposites with fine-grained SiC microstructures [J]. J Eur Ceram Soc,1999, 19(12): 2155–2163.
[14]
XIA H Y, WANG J P, JIN H Y, et al. Fabrication and properties ofreaction-formed SiC by infiltrating molten Si into mesocarbonmicrobeads-based carbon preform [J]. Mat Sci Eng A, 2010, 528(1):283–287.
[15]
HUANG Q W, JIN Z H. The high temperature oxidation behavior ofreaction-bonded silicon carbide [J]. J Mater Process Tech, 2001, 110(2):142–145.
[16]
HUANG Q W, ZHU L H. High-temperature strength and toughnessbehaviors for reaction-bonded SiC ceramics below 1400 ℃ [J]. MaterLett, 2 005, 59(14-15): 1732–1735.
[17]
CHU M C, CHO S J, PARK H M, et al. Crack-healing inreaction-bonded silicon carbide [J]. Mater Lett, 2004, 58(7/8):1313–1316.
[18]
SUYAMA S, KAMEDA T, ITOH Y. Development of high-strengthreaction-sintered silicon carbide [J]. Diam Relat Mater, 2003, 12(3/7):1201–1204.
[19]
PAIK U, PARK H C, CHOI S C, et al. Effect of particle dispersion onmicrostructure and strength of reaction-bonded silicon carbide [J]. MatSci Eng A, 2002, 334(1-2): 267–274.
[20]
MAITY A, KALITA D, KAYAL T K, et al. Synthesis of SiC ceramicsfrom processed cellulosic bio-precursor [J]. Ceram Int, 2010, 36(1):323–331.
[21]
CHAKRABARTI O P, MUKERJI J. Oxidation kinetics ofreaction-sintered silicon carbide [J]. Bull Mater Sci, 1993, 16(4):325–329.