全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纤维热处理对C/C-SiC复合材料剪切强度的影响

Full-Text   Cite this paper   Add to My Lib

Abstract:

对T300碳纤维在真空环境下,在600、900、1200、1500℃进行热处理,用液硅熔渗反应法(liquidsiliconinfiltration,LSI)制备了不同微观组织结构的C/C-SiC复合材料。采用光电子能谱分析了热处理对纤维表面结构的影响,用光学显微镜和扫描电子显微镜对材料微观形貌进行了观察分析。采用双槽口剪切法(DNS)测试了C/C-SiC复合材料层间剪切强度(interlaminarshearstrengh,ILSS),并分析了纤维热处理对材料剪切性能影响的微观机理。结果表明碳纤维经热处理后,表面化学成分发生变化,氧含量显著降低,改变了碳纤维增强树脂基复合材料(carbonfiberreinforcedresinmatrixcomposite,CFRP)先驱体中纤维/树脂界面结合强度,从而在CFRP裂解后形成了具有不同微观结构的C/C预制体,通过液Si对不同微结构的C/C预制体进行熔渗,获得具有不同微观结构的C/C-SiC复合材料;DNS测试发现碳纤维热处理能够有效改善C/C-SiC复合材料的层间剪切强度,主要是由于纤维经热处理后制备的C/C-SiC复合材料中,SiC基体相分布较均匀并包裹在碳纤维周围,导致纤维/基体界面结合强度高。经1500℃热处理纤维增强的C/C-SiC复合材料,其剪切强度为34MPa,与未处理的相比,ILSS提高了33%。

References

[1]  ? KRENKEL W, BERNDT F. C/C–SiC composites for space applications and advanced friction systems [J]. Mater Sci Eng A, 2005, 412(1/2): 177–181.
[2]  ? 韩秀峰, 张立同, 成来飞, 等. 基体改性对碳纤维增韧碳化硅复合材料结构与性能的影响[J]. 硅酸盐学报, 2006, 34(7): 871–874
[3]  HAN Xiufeng, ZHANG Litong, CHENG Laifei. J Chin Ceram Soc, 2006, 34(7): 871–874
[4]  ? 王继平, 金志浩, 钱军民, 等. 反应熔渗法制备C/C–SiC复合材料及其反应机理和动力学的研究进展[J]. 硅酸盐学报, 2005, 33(9): 1120–1126.
[5]  WANG Jiping, JIN Zhihao, QIAN Junmin, et al. J Chin Ceram Soc, 2005, 33(9): 1120–1126.
[6]  ? MANISH P, KUMAR S, PRASAD V V P, et al. High temperature C/C–SiC composite by liquid silicon infiltration: a literature review [J]. Indian Academy Sci, 2012, 1(35): 63–73.
[7]  ? 范晓孟, 殷小玮, 张立同, 等. 液硅渗透法制备Ti3SiC2改性C/C–SiC复合材料[J]. 复合材料学报, 2012, 29(1): 104–110.
[8]  FAN Xiaomeng, YIN Xiaowei, ZHANG Litong, et al. J Compos Mater (in Chinese), 2012, 29(1): 104–110.
[9]  ? 张永辉, 肖志超, 王继平, 等. C/C多孔体对C/C–SiC复合材料微观结构和弯曲性能的影响[J]. 硅酸盐学报, 2008, 36(8): 1069 –1073.
[10]  ZHANG Yonghui, XIAO Zhichao, WANG Jiping, et al. J Chin Ceram Soc, 2008, 36(8): 1069–1073.
[11]  ? SURESH K, ANIL K, ANUPAM S, et al. Capillary infiltration studies of liquids into 3D-stitched C–C performs Part A: Internal pore characterization by solvent infiltration, mercury porosimetry, and permeability studies [J]. J Eur Ceram Soc, 2009, 29(12): 2643–2650.
[12]  ? SURESH K, ANIL K, ANUPAM S, et al. Capillary infiltration studies of liquids into 3D-stitched C–C performs Part B: Kinetics of silicon infiltration [J]. J Eur Ceram Soc, 2009, 29(12): 2651–2657.
[13]  ? SHA J J, HAUSHERR M, KRENKEL W, et al. Microstructure changes caused by the interaction of fiber-matrix during the carbonization [C] // HT-CMC7, Bayreuth, Bavaria, Germany, 2010, 9: 143–148.
[14]  ? 肖志超, 陈青华,金志浩, 等. 热处理温度对碳纤维增强碳复合材料摩擦学性能的影响[J]. 硅酸盐学报, 2008, 36(08): 1153–1158.
[15]  XIAO Zhichao, CHEN Qinghua, JIN Zhihao, et al. J Chin Ceram Soc, 2008, 36(8): 1153–1158.
[16]  ? TSE H K, WEN S K, YING H C. Influence of carbon-fiber felts on the development of carbon–carbon composites [J]. Compos: Part A, 2003, 34(5): 393–401
[17]  ? DHAKATE S R, BAH O P. Effect of carbon fiber surface functional groups on the mechanical properties of carbon–carbon composites with HTT [J]. Carbon, 2003, 41(6): 1193–1203.
[18]  ? SONG W, ZHAO H C, WU J M. Influence of heat treatment on physical–chemical properties of PAN-based carbon fiber [J]. Ceram Internat, 2006, 32(3): 291–295
[19]  ? WANG S, CHEN Z H, MA Q S, et al. Effect of fiber surface state on mechanical properties of Cf/Si–O–C composites [J]. Mater Sci Eng A, 2005, 407(1/2): 245–249.
[20]  ? GOTO K, KAWAHARA I, HATTA H, et al. Measurement of fiber/matrix interface properties of C/C composites by single fiber and fiber bundle push-out methods [J]. Compos Interfaces, 2005, 12(7): 603–616.
[21]  ? RAMANATHAN T, BISMARCK A, SCHULZ E, et al, Investigation of the influence of surface-activated carbon fibers on debonding energy and friction stress in polymer-matrix composites by the micro-indentation technique [J]. Compos Sci Technol, 2001, 61(16): 2511– 2518.
[22]  ? LEE W H, LEE J G, REUCROFT P J. XPS study of carbon fiber surfaces reacted by thermal oxidation in a gas mixture of O2/(O2/N2)[J]. Appl Surf Sci , 2001, 171(1): 136–142.
[23]  ? IBARRA L, PANOS D. Dynamic properties of thermoplastic butadiene-styrene (SBS) and oxidized short carbon fiber composite materials [J]. J Appl Polym Sci, 1998, 67(10): 1819–1826.
[24]  ? IBARRA L, PANOS D. Mechanical properties of thermoplastic Butadiene-styrene (SBS) and oxidized short carbon fiber composites [J]. Polym Int, 1997, 43(3): 251–259.
[25]  ? WANG M, LAIRD C. Characterization of microstructure and tensile behavior of a cross-woven C–SiC composite [J]. Acta Mater, 1996, 44(4): 1371–1387.
[26]  ? WANG H L, ZHANG C Y , LIU Y S, et al. Temperature dependency of interlaminar shear strength of 2D–C/SiC composite [J]. Mater Design, 2012(36): 172–176.
[27]  
[28]  ? 魏连峰, 李克智, 吴恒, 等. SiC改性C/C复合材料的制备及其烧蚀性能[J]. 硅酸盐学报, 2011, 39(2): 251–255.
[29]  WEI Lianfeng, LI Kezhi, WU Heng, et al. J Chin Ceram Soc, 2011, 39(2): 251–255.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133