? WANG J, SHAO G, YU X, et al. Ce1–xGdxO2–x/2 powders synthesized by citrate method and solid oxide fuel cell anode prepared by lamination [J]. J Chin Ceram Soc, 2011, 39(4): 11–15.
[2]
? Wachsman E D, Lee K T. Lowering the temperature of solid oxide fuel cells [J]. Science, 2011, 334(6058): 935–939.
[3]
? Goodenough J B, Huang Y H. Alternative anode materials for solid oxide fuel cells [J]. J Power Sources, 2007, 173: 1–10.
[4]
? Sun C, Stimming U. Recent anode advances in solid oxide fuel cells [J]. J Power Sources, 2007, 171: 247–260.
[5]
? WANG L, LUO L, WU Y, et al. Effect of CeO2 additions in anode Ni–YSZ on properties of solid oxide fuel cell [J]. J Chin Ceram Soc, 2012, 40(4): 542–547.
[6]
? Tu B, Dong Y, Liu B, et al. Highly active lanthanum doped nickel anode for solid oxide fuel cells directly fuelled with methane [J]. J Power Sources, 2007, 165: 120–124.
[7]
? Panahi A K, Khoshkish H, Saraji M R. Fabrication of porous Ni–YSZ anodes by PSH-PIM [J]. Ionics, 2011, 17(8): 733–740.
[8]
? Poon M, Kesler O. The influence of pore formers on the microstructure of plasma-sprayed NiO–YSZ anodes [J]. J Power Sources, 2012, 210: 204–217.
[9]
? Shimada H, Takami E, Takizawa K A, et al. Highly dispersed anodes for solid oxide fuel cells using NiO/YSZ/BZY triple-phase composite powders prepared by spray pyrolysis [J]. Solid State Ionics, 2011, 193: 43–51.
[10]
? Marina O A, Mogensen M. High-temperature conversion of methane on a composite gadolinia-doped ceria–gold electrode [J]. Appl Catal A, 1999, 189: 117–126.
[11]
? Sumi H, Yamaguchi T, Hamanoto K, et al. Impact of direct butane microtubular solid oxide fuel cells [J]. J Power Sources, 2012, 220: 74–78.
[12]
? Steele B C H. Appraisal of Ce1–yGdyO2–y/2 electrolytes for IT-SOFC operation at 500 ℃ [J]. Solid State Ionics, 2000, 129: 95–110.
[13]
? RAmirez-Cabrera E, Atkinson A, Chadwick D. The influence of point defects on the resistance of ceria to carbon deposition in hydrocarbon catalysis [J]. Solid State Ionics, 2000, 136: 825–831.
[14]
? Xia C, Liu M. Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing [J]. Solid State Ionics, 2001, 144: 249–255.
[15]
? Xia C, Liu M. Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC–Ni anodes for low-temperature SOFCs [J]. Solid State Ionics, 2002, 152–153: 423–430.
[16]
? Eguchi K, Kamiuchi N, Kim J Y, et al. Microstructural change of Ni-GDC cermet anode in the electrolyte-supported disk-type SOFC upon daily start-up and shout-down operations [J]. Fuel Cells, 2012, 12(4): 537–542.
[17]
? Timurkutluk B, Celik S, Timurkutluk C, et al. Novel electrolytes for solid oxide fuel cells with improved mechanical properties [J]. Int J Hydrogen Energy, 2012, 37(18): 13499–13509.
[18]
? Timurkutluk B, Celik S, Toros S, et al. Effects of electrolyte pattern on mechanical and electrochemical properties of solid oxide fuel cells [J]. Ceram Int, 2012, 38(7): 5651–5659.
[19]
? Karczewski J, Bochentyn B, Molin S, et al. Solid oxide fuel cells with Ni-infiltrated perovskite anode [J]. Solid State Ionics, 2012, 221: 11–14.
[20]
? Tao Y, Shao J, Wang J, et al. Morphology control of Ce0.9Gd0.1O1.95 nanopowder synthesized by sol–gel method using PVP as a surfactant [J]. J Alloys Compd, 2009, 484: 729–733.
[21]
? Wang J X, Tao Y K, Shao J, et al. Synthesis and properties of (La0.75Sr0.25)0.95MnO3±δ nano-powder prepared via Pechini route [J]. J Power Sources, 2009, 186: 344–348.
[22]
? Liu M, He C, J. W, et al. Investigation of (CeO2)x(Sc2O3)(0.11?x)(ZrO2)0.89 (x = 0.01–0.10) electrolyte materials for intermediate-temperature solid oxide fuel cell [J]. J Alloys Compd, 2010, 502: 319–323.
[23]
? Yuan F, Wang J, Miao H, et al. Investigation of the crystal structure and ionic conductivity in the ternary system (Yb2O3)x–(Sc2O3)(0.11–x)– (ZrO2)0.89 (x = 0–0.11)[J]. J Alloy Compd, 2013, 549: 200–205.
[24]
? Huang Q A, Hui R, Wang B, et al. A review of AC impedance modeling and validation in SOFC diagnosis [J]. Electrochim Acta, 2007, 52: 8144–8164.