全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带强迫项的KdV方程的非线性自伴随性和守恒律

, PP. 154-161

Keywords: 非线性方程,带强迫项的KdV方程,守恒律,李对称,形式拉格朗日量

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用非线性自伴随性的概念和伊布拉基莫夫的一般守恒律定理,研究了带强迫的KdV方程的非线性自伴随性和守恒律。首先讨论了自伴随性,结果表明这个方程具有非线性自伴随性,同时得到了这个方程的形式拉格朗日量。在对这个方程进行李对称分析之后,根据李对称的不同得到了这个方程的一些非平凡守恒律。

References

[1]  Bluman G W, Kumei S. Symmetries and Differential Equations [M]. New York: Springer, 1989.
[2]  Bluman G W, Cheviakov A F, Anco S C. Applications of Symmetry Methods to Partial Differential Equations [M]. New York: Springer, 2010.
[3]  Benjamin T B. The stability of solitary waves [J]. Proc. Roy. Soc. London A, 1972, 328: 153-183.
[4]  Noether E. Invariante variationsprobleme [J]. Nachr. Konig. Gesell. Wissen., Gottingen, Math.-Phys. Kl. Heft, 1918, 2: 235-257.
[5]  Olver P J. Application of Lie Groups to Differential Equations [M]. New York: Springer, 1993.
[6]  Anco S C, Bluman G W. Direct construction method for conservation laws of partial differential equations, Part I: Examples of conservation laws classifications [J]. Eur. J. Appl. Math., 2002, 13: 545-566.
[7]  Kara A H, Mahomed F M. Noether-type symmetries and conservation laws via partial Lagrangians [J]. Nonlinear Dynam., 2006, 45: 367-383.
[8]  Ibragimov N H. A new conservation theorem [J]. J. Math. Anal. Appl., 2007, 333: 311-328.
[9]  Ibragimov N H. Integrating factors, adjoint equations and Lagrangians [J]. J. Math. Anal. Appl., 2006, 318: 742-757.
[10]  Ibragimov N H. Quasi-self-adjoint differential equations [J]. Arch. ALGA., 2007, 4: 55-60.
[11]  Ibragimov N H, Torrisi M, Tracina R. Quasi self-adjoint nonlinear wave equations [J]. J. Phys. A: Math. Theor., 2011, 43: 442001.
[12]  Gandarias M L. Weak self-adjoint differential equations [J]. J. Phys. A.: Math. Theor., 2011, 44: 262001.
[13]  Ibragimov N H, Torrisi M, Tracina R. Self-adjointness and conservation laws of a generalized Burgers equation [J]. J. Phys. A: Math. Theor., 2011, 44: 145201.
[14]  Bruzon M S, Gandarias M L, Ibragimov N H. Self-adjoint sub-classes of generalized thin film equations [J]. J. Math. Anal. Appl., 2009, 357: 307-313.
[15]  Gandarias M L, Redondo M, Bruzon M S. Some weak self-adjoint Hamilton Jacobi Bellman equations arising in financial mathematics [J]. Nonlinear Anal. RWA., 2012, 13: 340-347.
[16]  N.H. Ibragimov. Nonlinear self-adjointness and conservation laws [J]. J. Phys. A: Math. Theor., 2011, 44: 432002.
[17]  Naz R, Mahomed F M, Mason D P. Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics [J]. Appl. Math. Com., 2008, 205: 212-230.
[18]  Wang T T, Liu X Q, Yu J Q. Symmetries, exact solutions and conservation laws of Caudrey-Dodd-Gibbon-Kotera-Sawada equation [J]. Chinese Journal of Quantum Electronics [J], 2011, 28: 385-390 (in Chinese).
[19]  Chen M, Liu X Q, Wang M. Exact solutions and conservation laws of symmetric regularized long wave equations [J]. Journal of Quantum Electronics [J], 2012, 29: 21-26 (in Chinese).
[20]  Zhao J X, Guo B L. Analytical solutions to forced KdV equation [J]. Commun. Theor. Phys., 2009, 52: 279-283.
[21]  Salas A H. Computing solutions to a forced KdV equation [J]. Nonlinear Anal. RWA., 2011, 12: 1314-1320.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133