全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Bell态纠缠交换的量子私密比较方案

, PP. 579-585

Keywords: 量子信息,量子私密比较,Bell测量,纠缠交换,高安全性

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种新的量子私密比较方案,该方案以Bell态为量子资源,在不泄露用户私密信息的前提下,利用Bell测量和纠缠变换实现对用户的信息相等与否的比对。第三方(TP)准备Bell态和诱饵单光子,在传送粒子过程中,TP插入诱饵单光子,通过经典信道的讨论保证了方案的安全性。用户双方不需要做任何幺正变换,只需执行Bell测量,随后将自己的私密信息加密后发送给第三方。第三方通过简单的计算就可以实现两比特经典信息的比对。整个过程中所涉及到的三方都无法得知他人的私密信息,只能得到比对结果。最后,由TP宣布比较结果。此外,我们也验证了方案的正确性。

References

[1]  Bennett C H, Brassard G . Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 1984, 175–179
[2]  Chen meixiang,Li Honghai,Huang Zhiping,et al.Teleportation of a three-particle W state without the Bell-state Measurement[J].Chinese Journal of quantum Electronics(量子电子学报),2006,23(3):393(in Chinese)
[3]  Xi Yongjun,Fang Jianxing,Zhu Shiqun,et ai.Probabilistic teleportation of an arbitraty three-particle entangled state via three pairs partly entangled particles[J].Chinese Journal of quantum Electronics(量子电子学报),2006,23(1):61(in Chinese)
[4]  Ji Xin ,Zhang Shou. Teleportation of the three-particle entangled state by the two EPR pairs[J].Chinese Journal of quantum Electronics(量子电子学报),2006,23(6):816(in Chinese)
[5]  Zha Xinwei.Expansion of orthogonal complete set and transformation operator in teleportation of three-particle entangled state[J].Chinese Journal of quantum Electronics(量子电子学报),2007,24(2):179(in Chinese)
[6]  Bennett, C H, Brassard G, Crépeau C, Jozsa R, Peres A,Wootters W K. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys Rev Lett, 1993,70(13):1895–1899
[7]  Furusawa A, S?rensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S. Unconditional quantum teleportation. Science, 1998,282(5389): 706–709
[8]  Zhang Z J,Man Z X.Many-agent controlled teleportation ofmulti-qubit quantum information. Phys Lett A ,2005,341(1–4):55–59
[9]  Zhang W, Liu, Y M, Liu J, Zhang Z J. Teleportation of arbitrary unknown two atom state with cluster state via thermal cavity. Chin Phys. B ,2008,17(9): 3203–3208
[10]  Zhang Z Y, Liu Y M, Zuo X Q, Zhang W, Zhang Z J. Transformation operator and criterion for perfectly teleporting arbitrary three-qubit state with six-qubit channel and Bell-state measurement. Chin Phys Lett,2009,26(12):120303
[11]  Tsai C W, Hwang T. Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys 2010,49(8):1969–1975
[12]  Bostroem K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett,2002,89(18): 187902 ,
[13]  Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys Rev A,2003, 68(4):042317 ,
[14]  Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin Phys Lett,2005, 22(1):18–21 ,
[15]  Zhan Y B, Zhang L L, Zhang Q Y. Quantum secure direct communication by entangled qutrits and entanglement swapping. Opt Commun, 2009, 282(23): 4633–4636 ,
[16]  Yang C W, Tsai C W, Hwang T. Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Ser. G: Phys Mech Astron, 2011,54(3):L496–501 ,
[17]  Deng F G, Long G L, and Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317-042323.
[18]  Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999,59(3): 1829–1834
[19]  Xiao L, Long G L, Deng F G , Pan J W. Efficientmultiparty quantum secret sharing schemes. Phys Rev A , 2004,69(5):052307
[20]  Zhang Z J, Man Z X. Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys Rev A, 2005,72(2):022303
[21]  Deng F G , Long G L, Zhou H Y. An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys Lett A, 2005,340(1–4): 43–50
[22]  Deng F G , Zhou H Y , Long G L. Circular quantum secret sharing. J. Phys. A: Math. Gen, 2006,39(45):14089–14099
[23]  Han L F, Liu Y M, Liu J , Zhang Z J. Multiparty quantum secret sharing of secure direct communication using single photons. Opt Commun., 2008, 281(9): 2690–2694
[24]  Deng F G , Li X H, Zhou H Y. Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys Lett A, 2008,372(12):1957–1962
[25]  Sun Y, Wen Q Y, Gao F, Chen X , Zhu F C. Multiparty quantum secret sharing based on Bell measurement. Opt. Commun., 2009,282(17): 3647–3651
[26]  Shi R H, Huang L S, Yang W, Zhong H. Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun.,2010,283(11):2476–2480
[27]  Zhu Aidong,Zhang Shou.Quantum key distribution and controlled quantum direct communication applying product state of qutrit[J].Chinese Journal of quantum Electronics(量子电子学报),2007,24(3):316(in Chinese)
[28]  Deng F G, Long G L.Controlled order rearrangement encryption for quantum key distribution, Phys Rev A,2003, 68: 042315.
[29]  Deng F G, Long L. Bidirectional quantum key distribution protocol with practical faint laser pulses, Phys Rev A ,2004, 70:012311.
[30]  Li X H, Deng F G, Zhou H Y.Efficient quantum key distribution over a collective noise channel, Phys Rev A ,2008, 78: 022321.
[31]  Chen W, Han Z F, Zhang T, Wen H, Yin Z Q, Xu F X, Wu Q L, Liu Y, Zhang Y, Mo X F, Gui Y Z, Wei G, Guo G C.Field experiment on a ”star type” metropolitan quantum key distribution network, IEEE Photonics Tech. Lett., 2009, 21, pp. 575-577.
[32]  Yang Y G, Wen Q Y. An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys A: Math. Theor. 2009, 42(5): 055305
[33]  Chen X B , Xu G, Niu X X., Wen Q Y, Yang Y X. An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 2010,283(7): 1561–1565
[34]  Yang Y G, Wen Q Y. An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 2009,42(5), 055305
[35]  Chen X B , Xu G, Niu X X , Wen Q Y, Yang Y X. An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 2010,283(7):1561–1565
[36]  Greenberger D M , Horne M A , Zeilinger A. Going beyond Bell’s theorem. Arxiv preprint arXiv: 2007,0712.0921
[37]  Shi R H, Zhong H. Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf Process .2013,DOI 10.1007/s11128-012-0443-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133