全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

银纳米立方体对诺丹明分子的荧光增强或猝灭效应实验研究

, PP. 513-519

Keywords: 光谱学,增强荧光,表面等离子体激元,局域场增强,银纳米立方体

Full-Text   Cite this paper   Add to My Lib

Abstract:

用乙二醇还原硝酸银,成功制备了平均边长约97nm的银纳米立方体以用于诺丹明(RhB)分子的荧光实验。实验中,将探针分子RhB粉末掺杂于PMMA苯甲醚溶液中,制得不同厚度参杂有RhB探针分子的PMMA薄膜,运用光谱技术和共焦显微技术研究了银纳米立方体与荧光分子的间隔、银纳米立方体不同浓度分布对RhB分子的荧光强度的影响。荧光光谱表明,荧光强度随PMMA厚度变薄而增强,当PMMA厚度为10nm时,荧光增强因子最大,获得了56倍的荧光增强效果,而继续减小PMMA厚度时,其荧光增强因子又变小,说明发生了荧光猝灭效应。共焦荧光像则更直观地表现了银纳米立方体的浓度分布对荧光分子辐射增强的影响。因而,可通过调控银纳米立方体与荧光分子的距离及银纳米立方体的分布优化荧光增强因子以用于基于荧光的单分子探测,这一实验结果在生物成像和生物传感领域有潜在应用价值。

References

[1]  Fu Y, Lakowicz JR. Modification of single molecule fluorescence near metallic nanostructures[J]. Laser & Photon Rev , 2009, 3(1-2):12.
[2]  Zhang J, Fu Y, Chowdhury MH, Lakowicz JR. Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer: Coupling Effect between Metal Particles[J]. 2007, Nano Lett, 7(7):7.
[3]  Kravets VG, Zoriniants G, Burrows CP, Schedin F, Casiraghi C, Klar P, Geim AK, Barnes WL, Grigorenko AN.Cascaded Optical Field Enhancement in Composite Plasmonic Nanostructures[J]. PRL, 2010, 105(246806):4.
[4]  Grigorenko AN, Kravets VG, Zoriniants G, Burrows CP, Schedin F, Geim AK, Barnes WL.Composite Au Nanostructures for Fluorescence Studies in Visible Light[J]. Nano Lett, 2010,10(3):874-879.
[5]  Kim K, Lee YM, Lee JW, Shin KS.Metal-Enhanced Fluorescence of Rhodamine B Isothiocyanate from Micrometer-Sized Silver Powders[J]. Langmuir, 2009, 25:6.
[6]  Farc?u C, A?tilean S.Silver half-shell arrays with controlled plasmonic response for fluorescence enhancement optimization[J]. Appl Phys Lett. :2009, (95):3.
[7]  Mackowski S, Wormke S, Maier AJ, Brotosudarmo THP, Harutyunyan H, Hartschuh A, Govorov AO, Scheer H, Brauchle C. Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes[J]. Nano Lett, 2008, 8(2):558-564.
[8]  Aslan K, Leonenko Z, Lakowicz JR, Geddes CD. Fast and Slow Deposition of Silver Nanorods on Planar Surfaces: Application to Metal-Enhanced Fluorescence[J]. J Phys Chem B, 2005.109:6.
[9]  Cade NI, Ritman-Meer T, Kwakwa KA, Richards D.The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering[J]. Nanotechnology, 2009, 20(285201):7.
[10]  Hung Y-J, Smolyaninov II, Davis CC. Fluorescence enhancement by surface gratings[J]. OPTICS EXPRESS, 2006, 14(22):6.
[11]  Hwang E, Smolyaninov II, Davis CC. Surface Plasmon Polariton Enhanced Fluorescence from Quantum Dots on Nanostructured Metal Surfaces[J]. Nano Lett, 2010, 10:8.
[12]  Lakowicz JR, Shen Y, D'Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I.Radiative Decay Engineering 2. Effects of Silver Island Films on Fluorescence Intensity, Lifetimes, and Resonance Energy Transfer[J]. Anal Biochem, 2002,301:17.
[13]  Geddes CD, Lakowicz JR. Metal-Enhanced Fluorescence[J]. J Fluoresc, 2002,12(2):9.
[14]  Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, KlausMu¨llen, Moerner WE.Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. NATURE PHOTONICS , 2009, 3(11):4.
[15]  Dou-Guo Z, Pei W, Xiao-Jin J, Xiao-Hong S, Guang-Hui Y, Jiang-Ying Z, Yan D, Hai M, You-Yi S, Jing-Li Z et al.Fluorescence Enhancement of a Polymer Planar Waveguide Doped with Rhodamine B and Ag Nanoparticles[J]. Chinese Phys Lett, 2006, 23(10):5.
[16]  Hutter E, Janos.H.Fender. Exploitation of Localized Surface plasmon resonance[J]. AdvMater, 2004, 16(19):22.
[17]  Zayats AV, Smolyaninov II. Near-field photonics: surface plasmon polaritons and localized surface plasmons[J]. J Opt A: Pure Appl Opt , 2003, 5:36.
[18]  Anger P, Bharadwaj P, Novotny L. Enhancement and Quenching of Single-Molecule Fluorescence[J]. PRL , 2006, 96(113002 ):4.
[19]  CY L, KC C, CY C, SH C, TF G, SJ. C.Surface plasmon-enhanced and quenched two-photon excited fluorescence[J]. Opt Express, 2010, 18(12):17.
[20]  Castanié E, Boffety M, Carminati R.Fluorescence quenching by a metal nanoparticle in the extreme near-field regime[J]. Opt Lett, 2010,35(3):4.
[21]  Skrabalak SE, Au L, Li X, Xia Y. Facile synthesis of Ag nanocubes and Au nanocages[J]. NATURE PROTOCOLS, 2007, 2(9):9.
[22]  Zhang DG, Yuan X-C, Bouhelier A, Wang P, Ming H. Excitation of surface plasmon polaritons guided mode by Rhodamine B molecules doped in a PMMA stripe[J]. Opt Lett, 2010, 35(3):3.
[23]  Zhang YX, Dragan A, Geddes CD.Broad Wavelength Range Metal-Enhanced Fluorescence Using Nickel Nanodeposits[J]. J Phys Chem C, 2009, 113(36):6.
[24]  Zhang D, Yuan X, Bouhelier A. Direct image of surface-plasmon-coupled emission by leakage radiation microscopy[J]. Appl Optics, 2010,49(5):5.
[25]  Zhang DG, Moh KJ, Yuan X-C.Surface plasmon-coupled emission from shaped PMMA films doped with fluorescence molecules[J]. Opt Express, 2010,18(12):6.
[26]  Valeur B:2001 Molecular Fluorescence: Principles and Applications[M]. In.: Wile y-VCH Verlag GmbH.
[27]  Lakowicz JR.Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission[J]. Anal Biochem, 2005, 337:24.
[28]  Mattei G, Mazzoldi P, Bernas H. Metal Nanoclusters for Optical Properties[J]. In.: Berlin: Springer.
[29]  Maier SA: 2007 PLASMONICS:FUNDAMENTALS AND APPLICATIONS[J]. 1995, 234.
[30]  M.Bakker R, Yuan H-K, Liu Z, Drachev VP, Kildishev AV, Shalaev VM. Enhanced localized fluorescence in plasmonic nanoantennae[J]. Appl Phys Lett. 2008, (92):3.
[31]  Parfenov A, Gryczynski I, Malicka J, Geddes CD, Lakowicz JR. Enhanced Fluorescence from Fluorophores on Fractal Silver Surfaces[J]. J Phys Chem B. 2003, (107):5.
[32]  Thomas PonsIgor L. Medintz, Kim E. Sapsford, et al. On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles[J]. Nano Lett, 2007,7(10):8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133