全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一维光晶格中玻色-爱因斯坦凝聚体的相位涨落测量

, PP. 56-60

Keywords: 量子光学,一维光晶格,玻色-爱因斯坦凝聚,相位涨落

Full-Text   Cite this paper   Add to My Lib

Abstract:

玻色爱因斯坦凝聚体在一维光晶格中的相位涨落是研究量子相变的重要参量。我们在实验上和理论上分别获得了凝聚体从光晶格中释放后的密度分布,通过分析比较两者干涉峰的对比度提取凝聚体在光晶格中的相位涨落。应用这一方法,测量了不同光晶格阱深下凝聚体的相位涨落。当光晶格阱深从最小值5.6ER变化到30.7ER时,相位涨落从δ=0.29π上升到δ=0.69π。

References

[1]  Greiner M, Mandel O, Esslinger T, et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature (London), 2002, 415, 39-44.
[2]  Pedri P, Pitaevskii L, Stringari S, et al. Expansion of a Coherent Array of Bose-Einstein Condensates. Phys. Rev. Lett., 2001, 87, 220401
[3]  Peik E, Dahan M B, Bouchoule I, et al. Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams. Phys. Rev. A, 1997, 55, 2989-3001.
[4]  Orzel C, Tuchman A K, Fenselau M L, et al. Squeezed states in a Bose-Einstein condensate. Science, 2001, 291, 2386-2389.
[5]  Cataliotti F S, Burger S, Fort C, et al. Josephson junction arrays with Bose-Einstein condensates. Science, 2001, 293, 843-846.
[6]  Anker Th, Albiez M, Gati R, et al. Nonlinear self-trapping of matter waves in periodic potentials. Phys. Rev. Lett., 2005, 94, 020403
[7]  Jack M W, Collett M J, and Walls D F. Coherent quantum tunneling between two Bose-Einstein condensates. Phys. Rev. A, 1996, 54, R4625-R4628.
[8]  Milburn G J, Corney J, Wright E M, et al. Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Phys. Rev. A, 1997, 55, 4318-4324.
[9]  Javanainen J and Wilkens M. Phase and phase diffusion of a split Bose-Einstein condensate. Phys. Rev. Lett., 1997, 78, 4675-4678.
[10]  Molmer K. Phase collapse and excitations in Bose-Einstein condensates. Phys. Rev. A, 1998, 58, 566-575.
[11]  Javanainen J and Ivanov M Y. Splitting a trap containing a Bose-Einstein condensate: Atom number fluctuations. Phys. Rev. A, 1999, 60, 2351-2359
[12]  Leggett A J and Sols F. On the concept of spontaneously broken gauge symmetry in condensed matter physics. Found. Phys., 1991, 21, 353-364.
[13]  Sols F. Randomization of the phase after suppression of the Josephson coupling. Phys. B 1994, 194, 1389-1390.
[14]  Zapata I, Sols F, and Leggett A J. Josephson effect between trapped Bose-Einstein condensates. Phys. Rev. A, 1998, 57, R28-R31.
[15]  Wang Bing, Zhu Qiang, Zhou Hailong, et al. Measurement of phase fluctuations of Bose-Einstein condensates in an optical lattice. Phys. Rev. A, 2012, 86, 053609.
[16]  Wang Xiao Rui, Yang Lu, Tan Xin Zhou, et al. Bose-Einstein Condensates in a One-Dimensional Optical Lattice: from Superfluidity to Number-Squeezed States. Chin. Phys. Lett., 2009, 26, 083701.
[17]  Sapiro R E, Zhang R, and Raithel G. Reversible loss of superfluidity of a Bose–Einstein condensate in a 1D optical lattice. New J. Phys., 2009, 11, 013013
[18]  Freimund D L, Aflatooni K, and Batelaan H. Observation of the Kapitza-Dirac effect. Nature (London), 2001, 413, 142-143.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133