全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MDM光波导激发高阶SPP模的传输特性

, PP. 252-256

Keywords: 波导光学,金属-介质-金属,表面等离子体激元,传输距离,高阶模

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了金属-介质-金属(MDM)型表面等离子体激元(SPP)光波导的电磁特性。理论计算结果表明,对于633nm的TM偏振入射光,当介质膜层厚度小于85nm时,波导中只能激发产生一阶SPP模(基模),其余高阶模全部截止。随着介质膜厚度增加,高阶SPP模逐渐被激发产生。当介质膜层厚度较小时,SPP模的有效折射率的实部随阶数的增加而减小,而虚部则随阶数的增加而增加,SPP基模具有最大传输距离。然而,当MDM波导中的介质层厚度超过0.555μm时,由于三阶SPP模的电磁场主要集中在离金属层相对较远的介质层中,其有效折射率的虚部具有最小值,具有最大的传输距离,而非基模。当入射光波长为633nm介质层厚度为0.9μm时,Ag/SiO2/Ag光波导中三阶SPP模的传输距离达到约150μm。

References

[1]  Hibbins A P, Evans B R, Sambles J R. Experimental verification of designer surface plasmons[J], Science, 2005, 308(5722): 670-672.
[2]  Janssen O T, Urbach H P. Hooft G. W., Giant optical transmission of a subwavelength slit optimized using the magnetic field phase[J], Phys. Rev. Lett., 2007, 99(4): 043902.
[3]  Takakure Y. Analytical model of the enhanced light transmission through subwavelength metal slits: Green's function formalism versus Rayleigh’s expansion[J], Phys. Rev. Lett., 2001, 86(24): 5601-5603.
[4]  Yang F Z and Sambles J R. Resonant transmission of microwaves through a narrow metallic Slit[J], Phys. Rev. Lett., 2002, 89(6) 063901.
[5]  Avrutsky I, Salakhutdinov I, Elser J, et al. Highly confined optical modes in nanoscale metal-dielectric multilayers[J], Phys. Rev B, 2007, 75(24): 241402(R).
[6]  Chen J, Wang P, Wang X, et al. Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure[J], Appl. Phys. Lett., 2009, 94(8): 081117.
[7]  Bauters, J. D. Dai, J. Bauters, and JE Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl., 2012, 1(3):1–12.
[8]  Cory H, Zach C. Wave propagation in metamaterial multi-layered structures[J], Microwave and Optical Technology Lett., 2004, 40(6): 460-465.
[9]  Zhang Z M, Fu C J. Unusual photon tunneling in the presence of a layer with a negative refractive index[J], Appl. Phys. Lett., 2002, 80(6): 1097-1099.
[10]  Maier SA. Plasmonics: Fundamentals and Applications[M] New York: Springer, 2007.
[11]  Dionne JA, Sweatlock LA, Atwater HA, et al. Planar metal plasmon waveguides: frequency dependent dispersion, propagation, localization, and loss beyond the free electron model[J], Phys. Rev. B, 2005, 72(7), 075405.
[12]  Palik E D, Handbook of Optical Constants of Solids[M], 1998, Academic Press, London.
[13]  Lezec H J, Degiron A, Linke R A, et al. Beaming light from a subwavelength aperture[J], Science, 2002, 297(5582): 820-822.
[14]  Barnes W L, Dereux A, and Ebbesen T. Surface plasmon subwavelength optics[J], Nature, 2003, 424(6950), 824-830.
[15]  Genet C, and Ebbesen T W. Light in tiny holes[J], Nature, 2007, 445(7123): 39-46.
[16]  Cui Y X, He S L. Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna[J], Optics Exp., 2009, 17(19): 13995-14000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133