全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含色散项的Zabolotskaya-Khokhlov方程的对称、约化、精确解和守恒律

, PP. 46-52

Keywords: 修正的CK直接方法,DZK方程,对称,约化,精确解,守恒律

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用修正的CK直接方法得到了含色散项的Zabolotskaya-Khokhlov(简写为DZK)方程的对称、约化和一些精确解,包括双曲函数解,有理函数解,三角函数解等。同时得到了该方程的守恒律。

References

[1]  Chen Mei, Liu Xiqiang. Symmetries and exact solutions of the breaking soliton equation [J]. Communications in Theoretical Physics,2011,56(11):851-855.
[2]  Biuman G W, Kumei S. Symmetries and Differential Equations[M]. Berlin: Springer Velag ,1989.
[3]  Matveev V B, Salle M A. Darboux Transformation and Solitons[M]. Berlin: Springer Velag , 1991.
[4]  Rogers C, Schief W K. Ba¨cklund and Darboux Transformations, Geometry and Morden Applications in Soliton Theory, Cambridge University Press, Cambridge,2002.
[5]  Hirota R. The Direct Method in Soliton Theory, Cambridge University Press, Cambridge ,2004.
[6]  Wang Mingliang, Zhou Yubin, Li Zhibin. Application of a homogeneous banlance method to exact solutions of nonlinear equations in mathematical physics[J].Phys. Lett. A, 1996,216(1):67-75
[7]  Liu Xiqiang, Jiang Song. The sech-Tanh method and its applications [J].Phys. Lett. A, 2002,8(4):253-258.
[8]  陈美,刘希强. Konopelchenko-Dubrovsky 方程组的对称,精确解和守恒律[J]. 纯粹数学与应用数学,2011,27(4):533-539
[9]  Xin Xiangpeng, Liu Xiqiang, Zhang Linlin. Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation, Phys.Lett.,2011,28(2): 020201-1---020201-4.
[10]  张颖元,刘希强,王岗伟.Bogoyavlenskii-Kadontsev-Petviashili方程的新的显式解[J].昆明学院学报,2012,34(3):55-59.
[11]  Zhang Li hua,Liu Xiqiang. New exact solutions and conservation Laws to (3+1)-Dimensional Potential- YTSF equation[J].Communications in Theoretical Physics,2006,45(3):487-492.
[12]  Clarkson P A,Kruskal M D.New similarity solutions of the Boussinesq equation[J].Journal of Mathematical Physics,1989,30:2201-2213.
[13]  Li B Q, Li S, Ma Y L. New eExact novel time solitons for the dissipative Zabolotskaya -Khokhlov equation from nonlinear acoustics[J]. Zeit- schrift für Naturforschung A, 2012, 67: 601-607.
[14]  Liu Xiajie, Mei Chunliang, Ma Songhua. Traveling wave solutions and kind wave excitations for the (2 + 1)-dimensional dissipative Zabolotskaya-Khokhlov equation[J]. Applied Mathematics, 2013, 4: 1595-1598.
[15]  Masayoshi T, Similarity reductions of the Zabolotskaya-Khokhlov equation with a dissipative term[J]. Nonlinear Mathematical Physics 1995, 2: 392–397.
[16]  Lu D C, Hong B J.New exact solutions for the (2+1)-dimensional Generalized Broer-Kaup system. Applied Mathematics and Computation 2008; 199:572-580.
[17]  Ibragimov N H. A new conservation theorem[J]. Journal of Mathematical Analysis Application, 2007, 333: 311–328.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133