Chen Mei, Liu Xiqiang. Symmetries and exact solutions of the breaking soliton equation [J]. Communications in Theoretical Physics,2011,56(11):851-855.
[2]
Biuman G W, Kumei S. Symmetries and Differential Equations[M]. Berlin: Springer Velag ,1989.
[3]
Matveev V B, Salle M A. Darboux Transformation and Solitons[M]. Berlin: Springer Velag , 1991.
[4]
Rogers C, Schief W K. Ba¨cklund and Darboux Transformations, Geometry and Morden Applications in Soliton Theory, Cambridge University Press, Cambridge,2002.
[5]
Hirota R. The Direct Method in Soliton Theory, Cambridge University Press, Cambridge ,2004.
[6]
Wang Mingliang, Zhou Yubin, Li Zhibin. Application of a homogeneous banlance method to exact solutions of nonlinear equations in mathematical physics[J].Phys. Lett. A, 1996,216(1):67-75
[7]
Liu Xiqiang, Jiang Song. The sech-Tanh method and its applications [J].Phys. Lett. A, 2002,8(4):253-258.
Xin Xiangpeng, Liu Xiqiang, Zhang Linlin. Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation, Phys.Lett.,2011,28(2): 020201-1---020201-4.
Zhang Li hua,Liu Xiqiang. New exact solutions and conservation Laws to (3+1)-Dimensional Potential- YTSF equation[J].Communications in Theoretical Physics,2006,45(3):487-492.
[12]
Clarkson P A,Kruskal M D.New similarity solutions of the Boussinesq equation[J].Journal of Mathematical Physics,1989,30:2201-2213.
[13]
Li B Q, Li S, Ma Y L. New eExact novel time solitons for the dissipative Zabolotskaya -Khokhlov equation from nonlinear acoustics[J]. Zeit- schrift für Naturforschung A, 2012, 67: 601-607.
[14]
Liu Xiajie, Mei Chunliang, Ma Songhua. Traveling wave solutions and kind wave excitations for the (2 + 1)-dimensional dissipative Zabolotskaya-Khokhlov equation[J]. Applied Mathematics, 2013, 4: 1595-1598.
[15]
Masayoshi T, Similarity reductions of the Zabolotskaya-Khokhlov equation with a dissipative term[J]. Nonlinear Mathematical Physics 1995, 2: 392–397.
[16]
Lu D C, Hong B J.New exact solutions for the (2+1)-dimensional Generalized Broer-Kaup system. Applied Mathematics and Computation 2008; 199:572-580.
[17]
Ibragimov N H. A new conservation theorem[J]. Journal of Mathematical Analysis Application, 2007, 333: 311–328.