全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于点扩散函数支持域扩展的多帧未匹配退化图像盲解卷积复原

, PP. 407-413

Keywords: 盲解卷积,点扩散函数,支持域,匹配

Full-Text   Cite this paper   Add to My Lib

Abstract:

多帧盲解卷积算法利用多帧退化图像进行复原可以获得清晰原始图像和点扩散函数的信息,受到了很多研究者的关注。目前大部分多帧盲解卷积算法都需要对多帧退化图像进行匹配预处理,以消除图像间平移引入的算法求解误差。本文利用频率内的多帧盲解卷积算法对未匹配的退化图像进行处理,不需要进行预匹配处理,只需要对点扩散函数的支持域进行扩展就可以复原获取清晰化的图像。利用傅里叶变换的性质对该方法的可行性进行了说明。同时对该方法进行了数字仿真实验,复原结果中的点扩散函数发生了相对移动消除了图像间未匹配的影响,证实了本文方法的有效性。

References

[1]  F. Sroubek and J. Flusser, Multichannel blind iterative image restoration [J], IEEE T Image Process. 12, 1094-1106 (2003).
[2]  A. N. Rajagopalan and S. Chaudhuri, A recursive algorithm for maximum likelihood-based identification of blur from multiple observations [J], IEEE T Image Process. 7, 1075-1079 (1998).
[3]  Shao Hui, Wang Jianye, Wang Liang, Chen Shuai, Zhang Guangyu, Multiframe Turbulence-degraded Image Restoration Algorithm Based on Circulate Iteration, Laser and Optoelectronics Progress, 2014,07:45-52.
[4]  邵慧,汪建业,王亮,陈帅,张光雨. 基于循环迭代的多帧湍流退化图像复原算法[J]. 激光与光电子学进展,2014,07:45-52.
[5]  Feng Xiaoxing, Shi Dongfeng, Qiao Chunhong, Zhang Pengfei, Fan Chengyu, Wang Yingjian, Myoptic Deconvolution Restoration Based on Multiframe Turbulence Degraded Images, Chinese Journal of Lasers, 2014,09:245-250.
[6]  冯晓星,时东锋,乔春红,张鹏飞,范承玉,王英俭. 基于多帧湍流退化图像的近视解卷积复原[J]. 中国激光, 2014,09:245-250.
[7]  Shao Hui, Wang Jianye, Xu Peng, Yang Minghan, Zhou Chun, Multiframe Myopic Deconvolution for Short Exposure Images, 2014,10:2110-2116.
[8]  邵慧,汪建业,徐鹏,杨明翰,周春. 多帧短曝光图像近视解卷积[J]. 电子学报,2014,10:2110-2116.
[9]  Qiao Rui, Zhang Jinhua, Compressed sensing imaging of moving objects, Chinese Journal of Quantum Electronics, 2015,01:17-23.
[10]  乔蕊,张锦华. 运动物体的压缩感知成像[J]. 量子电子学报, 2015,01:17-23.
[11]  Bian Haiyi, Gao Wanrong, Zhang Xianling, Chen Chaoliang, Reconstruction Method Based on the Detected Matrix for Spectral-Domain Optical Coherence Tomography, Acta Optica Sinica, 2014,02:101-107.
[12]  卞海溢,高万荣,张仙玲,陈朝良. 基于观察矩阵的频域光学相干层析成像图像重构算法[J]. 光学学报,2014,02:101-107.
[13]  M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, Efficient subpixel image registration algorithms [J], Opt. Lett. 33, 156-158 (2008).
[14]  Z.-l. Song, S. Li, and T. F. George, Remote sensing image registration approach based on a retrofitted SIFT algorithm and Lissajous-curve trajectories [J], Opt. Express 18, 513-522 (2010).
[15]  F. Ye, S. Xu, and Y. Xiong, Two-step image registration by artificial immune system and chamfer matching [J], Chin. Opt. Lett. 6, 651-653 (2008).
[16]  J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
[17]  H. Takeda, S. Farsiu, and P. Milanfar, Kernel regression for image processing and reconstruction [J], IEEE T Image Process. 16, 349-366 (2007).
[18]  H. Takeda, S. Farsiu, and P. Milanfar, Deblurring using regularized locally adaptive kernel regression [J], IEEE T Image Process. 17, 550-563 (2008).
[19]  D. G. Sheppard, B. R. Hunt, and M. W. Marcellin, Iterative multiframe superresolution algorithms for atmospheric-turbulence-degraded imagery [J], J. Opt. Soc. Am. A 15, 978-992 (1998).
[20]  E. Y. Lam and J. W. Goodman, Iterative statistical approach to blind image deconvolution [J], J. Opt. Soc. Am. A 17, 1177-1184 (2000).
[21]  G. R. Ayers and J. C. Dainty, Iterative blind deconvolution method and its applications [J], Opt. Lett. 13, 547-549 (1988).
[22]  T. J. Schulz, Multiframe blind deconvolution of astronomical images [J], J. Opt. Soc. Am. A 10, 1064-1073 (1993).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133