全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

广义非局域非线性薛定谔模型的自相似解

, PP. 465-472

Keywords: 非线性光学,自相似解,弱非局域非线性薛定谔方程,非线性增益

Full-Text   Cite this paper   Add to My Lib

Abstract:

在获得一个含变化3-5阶非线性、弱非局域性、增益及非线性增益的广义薛定谔方程的自相似解的基础上,采用数值方法研究了解的稳定性.结果表明,在同时具有或没有非局域性和5阶非线性的介质中可以形成与传播自相似波;而且当相位参数远离时,非局域度和累积衍射将极大影响自相似波的稳定性.

References

[1]  Barenblatt G I. Scaling, Self-Similarity, and Intermediate Asymptotics
[2]  [M]. Cambridge:Cambridge University Press, 1996.?
[3]  Olver P J. Applications of Lie Groups to Differential Equations
[4]  [M]. New York: Springer, 1986.?
[5]  Turitsyn S K. Breathing self-similar dynamics and oscillatory tails of the chirped dispersion-managed soliton
[6]  [J]. Phys. Rev. E, 1998, 58: R1256.?
[7]  Kruglov V I. Peacock A C, and Harvey J D. Exact self-similar solutions of the generalized nonlinear Schr?dinger equation with distributed coefficients
[8]  [J]. Phys. Rev. Lett., 2003, 90: 113902.?
[9]  Chen S, Yi L, Guo D, and Lu P. Self-similar evolutions of parabolic, HG, and hybrid optical pulses: Universality and diversity
[10]  [J]. Phys. Rev. E, 2005, 72: 016622.?
[11]  Chen S, Yi L. Chirped self-similar solutions of a generalized nonlinear Schr?dinger equation model
[12]  [J]. Phys. Rev. E, 2005, 71: 016606.?
[13]  Raju T S, Panigrahi P K, and Porezian K. Self-similar propagation and compression of chirped self-similar waves in asymmetric twin-core fibers with nonlinear gain
[14]  [J]. Phys. Rev. E, 2005, 72: 046612.?
[15]  Wadati M. B?cklund transformation for solutions of the modified Korteweg-de Vries equation
[16]  [J]. J. Phys. Soc. Japan., 1974, 36: 1498.?
[17]  Ablowitz M J and Clarkson P A. Nonlinear evolution equations and inverse scattering
[18]  [M]. Cambridge: Cambridge University Press, 1999.?
[19]  Dong Z, Yu X, and Wang L. Exact traveling wave solutions of the nonlinear coupled KdV equations
[20]  [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2006, 23(3): 379 (in Chinese).
[21]  
[22]  Zheng B. New soliton solutions to 2+1 dimensional breaking soliton equation
[23]  [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2006, 23(4): 451 (in Chinese).
[24]  
[25]  Korabel N and Klages R. Fractal Structures of Normal and Anomalous Diffusion in Nonlinear Nonhyperbolic Dynamical Systems
[26]  [J]. Phys. Rev. Lett., 2002, 89: 214102.?
[27]  Fermann M E, Kruglov V I. Thomsen B C, et al. Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers
[28]  [J]. Phys. Rev. Lett., 2000, 84: 6010.?
[29]  Chang G, Winful H G, Galvanauskas A, and Norris T B. Self-similar solutions of the generalized nonlinear Schr?dinger equation with distributed coefficients
[30]  Agrawal G P. Nonlinear Fiber Optics. Boston: Academic Press, 2006: 4th ed., Chap.2.
[31]  Zhang Shao and Yi Lin. Exact solutions of a generalized nonlinear Schr?dinger equation
[32]  [J]. Phys. Rev. E, 2008, 78: 026602.
[33]  
[34]  Shih M-f, Segev M, and Salamo G. Three-dimensional spiraling of interacting spatial solitons
[35]  [J]. Phys. Rev. Lett., 1997, 78: 2551.?
[36]  Werner A G J, Hensler S, Stuhler J, and Pfau T. Bose-Einstein Condensation of Chromium
[37]  [J]. Phys. Rev. Lett., 2005, 94: 160401.
[38]  
[39]  Lindl J D. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain
[40]  [J]. Phys. Plasmas, 1995, 2(11): 3933.?
[41]  [J]. Phys. Rev. E, 2005, 72: 016609.
[42]  
[43]  Peccianti M, Brzdakiewicz K A, and Assanto G. Nonlocal spatial soliton interactions in nematic liquid crystals
[44]  [J]. Opt. Lett., 2002, 27: 1460.
[45]  
[46]  Królikowski W and Bang O. Solitons in nonlocal nonlinear media: Exact solutions
[47]  [J]. Phys. Rev. E, 2000, 63: 016610.?
[48]  Conti C, Peccianti M, and Assanto G. Observation of optical spatial solitons in a highly nonlocal medium
[49]  [J]. Phys. Rev. Lett., 2004, 92: 113902.
[50]  Zhong W and Yi L. Two-dimensional Laguerre-Gaussian soliton family in strongly nonlocal nonlinear media
[51]  [J]. Phys. Rev. A, 2007, 75: R061801.?
[52]  Mihalache D, Mazilu D, Lederer F, et al. Stable solitons of even and odd parities supported by competing nonlocal nonlinearities
[53]  [J]. Phys. Rev. E, 2006, 74: 066614.?
[54]  Królikowski W, Bang O, Rasmussen J J, and Wyller J. Modulational instability in nonlocal nonlinear Kerr media
[55]  [J]. Phys. Rev. E, 2001, 64: 016612.
[56]  

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133