全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于液体选择填充光子晶体光纤的波分解复用器研究

, PP. 507-512

Keywords: 纤维与波导光学,波分解复用器,有限元法,液体填充光子晶体光纤,光束传播法

Full-Text   Cite this paper   Add to My Lib

Abstract:

设计了一种基于液体选择填充三芯光子晶体光纤的1.31/1.55um波分解复用器。中间为缺失一个空气孔的普通二氧化硅纤芯,左右两纤芯填充了不同折射率的液体材料。根据光纤的消逝场耦合的模式理论,不对称相邻波导存在波长相关耦合。不同填充折射率的两纤芯与中间纤芯分别耦合,构成两个不同响应波长的光滤波器。通过选择合适光纤长度,可实现不同波长光的分离。采用全矢量有限元法分析了光纤的传输特性,讨论了填充不同折射率液体时波导间的模式耦合,得到了其匹配波长与耦合长度。基于光束传播法仿真发现,长度为4.88mm的光纤能实现1.31/1.55um波长光的解复用。

References

[1]  Yue Y, Kai G, Wang Z, et al. Broadband single-polarization singlemode photonic crystal fiber coupler [J]. IEEE Photon. Technol. Lett., 2006, 18(19): 2032–2034.
[2]  Knight J C, Birks T A, Russell P S J, et al. All-silica Single-Mode Optical Fiber with Photonic Crystal Cladding [J]. Opt. Lett., 1996, 21: 1547-1549.
[3]  Knight J C, Broeng J, Birks T A, and Russell P S J. Photonic band gap guidance in optical fibers [J]. Science, 1998, 282: 1476-1478.
[4]  Birks T A, Knight J C, Russell P S J. Endlessly single mode photonic crystal fiber [J]. Opt. Lett., 1997, 22: 961-963.
[5]  Yang T J, Shen L F, Chau Y F, et al. High birefringence and low loss circular air-holes photonic crystal fiber using complex unit cells in cladding [J]. Opt. Commun., 2008, 281: 4334-4338.
[6]  Wang Liang, Yang Dongxiao. Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core [J]. Opt. Exp., 2007, 15(14): 8892-8897.
[7]  Vincetti L, Poli F, Selleri S. Confinement loss and nonlinearity analysis of air-guiding modified honeycomb photonic bandgap fibers [J]. IEEE Photon. Technol. Lett., 2006, 18: 508-510.
[8]  Wang Y M, Zhang X, Ren X M, et al. Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss [J]. Applied Optics, 2010, 49(3): 292-297.
[9]  Shen Linping, Huang Weiping, and Jian Shuisheng. Design of photonic crystal fibers for dispersion-related applications [J]. J. Lightw. Technol., 2003, 21(7): 1644-1651.
[10]  Wang J Y, Jiang C, Hu W S, et al. Dispersion and Polarization Properties of Elliptical Air-Hole-Containing Photonic Crystal Fibers [J]. Optics & Laser Technology, 2007, 39: 913-917.
[11]  Saitoh K and Koshiba M. Leakage loss and group velocity dispersion in air-core photonic bandgap fibers [J]. Opt. Exp., 2003, 11(23): 3100-3109.
[12]  Roberts P J, Mangan B J, Sabert H, and et al. Control of dispersion in photonic crystal fibers [J]. J. Opt. Fiber. Commun. Rep., 2005, 2: 435-461.
[13]  Yariv A. Coupled-mode theory for guided-wave optics [J]. IEEE J. Quantum Electron., 1973, 9: 919–933.
[14]  Saitoh K, Sato Y, and Koshiba M. Coupling characteristics of dual-core photonic crystal fiber couplers [J]. Opt. Exp., 2003, 11(24): 3188–3195.
[15]  K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Exp., 2004, 12: 3940-3946.
[16]  Wen Ke, Wang Rong, Wang Jingyuan, Li Jianhua. Polarization Splitter Based on Resonant Tunneling Phenomenon in Three-Core Photonic Crystal Fibers [J]. Chinese Journal of Lasers (中国激光), 2008, 35(12): 1962-1965 (in Chinese).
[17]  Zhang Lin and Yang Changxi, “Polarization-dependent coupling in twin-core photonic crystal fibers [J]. J. Lightw. Technol., 2004, 22(5): 1367–1373.
[18]  Wen Ke, Wang Jingyuan, Wang Rong , Polarization splitter based on two-core rectangular-lattice photonic crystal fibers, Chinese Journal of Quantum Electronics (量子电子学报), 2008, 25(4):505-508 (in Chinese)
[19]  Saitoh K, Florous N J, Koshiba M. Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers [J]. Opt. Exp., 2005, 13(25): 10327-10335.
[20]  Wen Ke, Wang Rong, Wang Jingyuan, Li Jianhua. A Novel Wavelength-Division Demultiplexer Based on Hybrid Photonic Crystal Fibrs [J]. Acta Optica Sinica(光学学报), 2009, 29(4): 1088-1091 (in Chinese).
[21]  Chen Mingyang, Zhou Jun, and Edwin Y B P. A Novel WDM Component Based on a Three-Core Photonic Crystal Fiber [J]. J. Lightw. Technol., 2009, 27(13): 2343-2347.
[22]  Eggleton B J, Kerbage C, Westbrook P S, et al. Microstructure optical fiber devices [J]. Opt. Exp., 2001, 9: 698-713.
[23]  Fang Hong, Lou Shuqin, Guo Tieying, Jian Shuisheng. Novel-High Birefringence Photonic Crystal Fiber [J]. Acta Optica Sinica(光学学报), 2007, 27(2): 202-206 (in Chinese).
[24]  Liou J H, Huang S S, Yu C P. Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers [J]. Opt. Commun., 2010, 283: 971-974.
[25]  Kerbage C and Eggleton B J. Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber [J]. Opt. Exp., 2002, 10: 246-255.
[26]  Zografopoulos D C, Kriezis E.E. Tunable Polarization Properties of Hybrid-Guiding Liquid-Crystal Photonic Crystal Fibers [J]. J. Lightwave Technol., 2009, 27: 773-779.
[27]  Ertman S, Wolinski T R, Pysz D, and et al. Low-loss propagation and continuously tunable birefringence in high-index photonic crystal fibers filled with nematic liquid crystals [J]. Opt. Exp., 2009,17(21):19298-19310.
[28]  C J S de Matos, C M B Cordeiro, E M dos Santos, et al. Liquid-core, liquid-cladding photonic crystal fibers [J]. Opt. Exp., 2007, 15(18): 11207-11212.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133