全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Caudrey–Dodd–Gibbon–Kotera–Sawada方程的对称、精确解和守恒律

, PP. 385-390

Keywords: (2+1)维CDGKS方程,改进的CK直接方法,精确解,守恒律

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用改进的CK直接方法,得到了(2+1)维Caudrey–Dodd–Gibbon–Kotera–Sawada(CDGKS)方程的对称群定理。利用对称群理论和方程的旧解得到了该方程新的精确解,扩大了解的范围。最后根据对称和共轭方程求出了(2+1)维CDGKS方程的无穷多守恒律。

References

[1]  Konopelchenko, B., Dubrovsky, V.. Some new integrable evolution equations in 2+1 dimensions [J]. Phys. Lett. A, 1984, 102: 15-17.
[2]  Yi Cheng, Yi-Shen Li. J. Phys. Constraints of the 2+1 dimensional integrable soliton systems [J]. J. Phys. A: Math. Gen., 1992, 25: 419.
[3]  Chan W. L., Zheng Yu-Kun. Backlund transformations for the Caudrey–Dodd–Gibbon–Kotera–
[4]  Sawada equation and itsλ-modified equation [J]. J. Math. Phys., 1989, 30; 2065-2068.
[5]  Cao Ce-wen, Wu Yong-tang, Geng Xian-guo. On quasi-periodic solutions of the 2+1 dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation [J]. Phys. Lett. A, 1999, 256: 59–65.
[6]  Lv Na, Mei Jian-Qin, Zhang Hong-Qing. Symmetry Reductions and Group-Invariant Solutions of (2+1)-Dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada Equation [J]. Commun. Theor. Phys., 2010, 53: 591-596.
[7]  J.D. Gibbon, R.K. Dodd, P.J. Caudrey. A new hierarchy of Kortewge-de Vries equations [J]. Proc. Roy. Soc. Lond. Ser. A., 1976, 351: 407-422.
[8]  R.K. Dodd, J.D. Gibbon. The prolongation structure of a higher order Kortewge-de Vries equations [J]. Proc. Roy. Soc. Lond. Ser. A., 1977, 358: 287-296.
[9]  Lou Sen-Yue, Ma Hong-Cai. Non-Lie symmetry groups of (2+1) –dimensional nonlinear systems obtained form a simple direct method [J]. J. Phys A: Math. Gen. 2005, 38: L129~L137.
[10]  Gao Jie, Liu Xi-Qiang, Guo Mei-Yu. New solutions and conservation lows of the (3+1)-dimensional nonlinear evolution equations [J]. Chinese Journal of Quantum Electronics(量子电子学报), 2009, (1): 16-22 (in Chinese).
[11]  Yang Zong-Hang. A Series of Exact Solutions of (2+1)-Dimensional CDGKS Equation [J]. Commun. Theor. Phys., 2006, 46: 807-811.
[12]  Xu Bin, Liu Xi-Qiang. Symmetry reduction and invariable solutions of the (2+1)-dimensional Gardner equation [J]. Chinese Journal of Quantum Electronics(量子电子学报). 2009, 26(5): 531-536(in Chinese).
[13]  Nail H I. A new conservation theorem [J]. J. Math. Anal. Appl., 2007, 333: 311~328.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133