全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

环境为热浴的开放量子系统模型的研究

, PP. 660-673

Keywords: 量子光学,开放量子系统,Markov逼近,Markovian主方程,non-Markovian主方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于具有non-Markovian特性的关于量子系统约化密度矩阵的精确系统动力学方程,分别根据方程所具有的非封闭、不等时、积分微分方程的特性,通过Born逼近和Markov逼近得到关于量子系统约化密度矩阵的封闭、等时和微分的Markovian主方程;逐一分析了Markovian主方程的Lindblad形式、具有方便检验正定性的GKS表达形式、针对单量子位系统的Bloch球表达形式和无需明确的环境信息也能对开放系统进行描述的Kraus表达形式;分析并比较了能去除系统动力学方程non-Markovian特性的4种Markov逼近方法以及其他四种特定情形下常见的Markovian主方程;对于不适用于Markov逼近的情形,分析了能满足开放量子系统动力学对于系统状态要求的post-Markovian主方程;当热浴与量子系统发生能量交换,且热浴与量子系统组成的封闭系统能量守恒时,给出了热浴状态不恒定时开放量子系统的动力学方程,并通过Markov逼近得到Markovian主方程。

References

[1]  Cong S, Lou Y. Decoherence and control strategies in open quantum systems [J]. Chinese Journal of Quantum Electronics, 2008, 25(6): 665-669. (in Chinese)
[2]  Zhang Y. Principles of quantum information physics [M]. Beijing: Science Press,2006. 130-131. (in Chinese)
[3]  Stefanescu E, Scheid W, and Sandulescu A. Non-Markovian master equation for a system of Fermions interacting with an electromagnetic field [J]. Annals of Physics, 2008, 323(5): 1168-1190.
[4]  Weiss U. Quantum dissipative systems [M], 3rd ed. Singapore: World Scientific, 2008: 101-105.
[5]  Gambetta J M. Non-Markovian stochastic Schr?dinger equations and interpretations of quantum mechanics [D]. Queensland: Griffith University, 2003.
[6]  Redfield A G. On the theory of relaxation processes [J]. IBM J Res Dev, 1957, 1: 19-31.
[7]  Lindblad G. On the generators of quantum dynamical semigroups [J]. Commun Math Phys, 1976, 48: 119-130
[8]  Gaspard P, Nagaoka M. Slippage of initial conditions for the Redfield master equation [J]. J Chem Phys, 1999, 111: 5668-5675.
[9]  Strunz W T. The Brownian motion stochastic Schr?dinger equation [J]. Chem Phys, 2001, 268: 237-248.
[10]  Esposito M, Gaspard P. Quantum master equation for a system influencing its environment [J]. Phys Rev E, 2003, 68(6): 066112.
[11]  Kraus K. States, effects and operations: fundamental notions of quantum theory [M]. Berlin: Springer-Verlag, 1983.151-167.
[12]  Melikidze A. Quantum mechanics of open systems [D]. Princeton: Princeton University, 2001.
[13]  Gorini V, Kossakowski A, Sudarshan E C G. Completely positive dynamical semigroups of N-level systems [J]. J Math Phys, 1976, 17: 821-825.
[14]  Dacies E B. Markovian master equations ii. [J]. Mathematical Annals, 1976, 219: 147-158.
[15]  Gutmann H P G. Description and control of decoherence in quantum bit systems [D]. Munchen: Ludwig-Maximilians University, 2005.
[16]  Daffer S L. Markovian and non-Markovian state evolution in open quantum systems [D]. Albuquerque. New Mexico: University of New Mexico, 1999.
[17]  Luczka J. On Markovian kinetic equations: Zubarev's nonequilibrium statistical operator approach [J]. Physica A, 1989, 149: 245-266.
[18]  Celio M, Loss D. Comparison between different markov approximations for open spin systems [J]. Physica A, 1989, 158: 769-783.
[19]  Scully M O, Zubairy MS. Quantum optics [M]. Cambridge, England: Cambridge University Press, 1997. 255-256.
[20]  Michael R G. Models for local Ohmic quantum dissipation [J]. Phys. Rev. A. 1993, 48(2): 1028-1034.
[21]  Oreshkov O. Topics in quantum information and the theory of open quantum systems [D]. Los Angeles: University of Southern California, 2008.
[22]  Shabani A, Lidar D A. Completely positive post-markovian master equation via a measurement approach [J]. Phys. Rev. A., 2005, 71(2), 020101.
[23]  Cohen D, Kottos T. Quantum dissipation due to the interaction with chaotic degrees of freedom and the correspondence principle [J]. Phys. Rev. Lett., 1999, 82: 4951-4955.
[24]  Marcus R A. Ion pairing and electron transfer [J]. Adv. Chem. Phys., 1997, 101: 391-408.
[25]  Deng Y, Stratt R M. Vibrational energy relaxation of polyatomic molecules in liquids: the solvent’s perspective [J], J. Chem. Phys., 2002, 117: 1735-1749.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133