全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

辐射压力诱导强耦合光机械腔中的简正模式分裂和冷却

, PP. 153-164

Keywords: 量子光学,光机械腔,辐射压力,简正模式分裂,冷却

Full-Text   Cite this paper   Add to My Lib

Abstract:

在解析边带机制下用量子郞之万方程研究一种由辐射压力与驱动Fabry-Perot光学腔相耦合而产生的光机械动力学行为。随着输入激光功率的增加,振子的涨落光谱呈现简正模式分裂的现象,并且结果和实验相符合。也推导了有效机械阻尼和共振频移。红移边带导致了机械模的冷却,蓝移边带引起了机械模的放大。此外,引入一种近似机制来研究振子的冷却。由于简正模式分裂和基态冷却都要求在解析边带机制下,这就需要考虑简正模式分裂是否会影响到振子的冷却。同时也讨论了操控基态冷却的关键因素。

References

[1]  Marshall W, Simon C and Bouwmeester D. Towards quantum superpositions of a mirror[J]. Phys. Rev. Lett, 2003, 91(13), 130401-130404.?
[2]  Kippenberg T J and Vahala K J. Cavity optomechanics: back-action at the mesoscale[J]. Science, 2008, 321(5893):1172-1176.?
[3]  Gigan S, Bohm H R, Paternostro M, et al. Self-cooling of a micromirror by radiation pressure[J]. Nature, 2006, 444(2): 67-70.?
[4]  Kleckner D and Bouwmeester D. Sub-kelvin optical cooling of a micromechanical resonator[J]. Nature, 2006, 444(2):75-78.?
[5]  Poggio M, Degen C L, Mamin H J, et al. Feedback cooling of a cantilever's fundamental mode below 5 Mk[J]. Phys. Rev. Lett, 2007, 99(1):017201-017205.?
[6]  Arcizet O, Cohadon P-F, Briant T. et al. Radiation-pressure cooling and optomechanical instability of a micromirror[J].Nature,2006, 444(2):71-74.?
[7]  Bhattacharya M and Meystre P. Trapping and cooling a mirror to its quantum mechanical ground state[J]. Phys. Rev. Lett, 2007, 99(7):073601-073605.?
[8]  Wilson-Rae I, Nooshi N, Zwerger W, et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction[J]. Phys. Rev. Lett, 2007, 99(9):093901-093905.?
[9]  Marquardt F, Chen J P, Clerk A A, et al. Quantum theory of cavity-assisted sideband cooling of mechanical motion[J]. Phys. Rev. Lett, 2007, 99(9): 093902-093906.?
[10]  Mancini S, Vitali D, and Tombesi P. Optomechanical cooling of a macroscopic oscillator by homodyne feedback[J]. Phys. Rev. Lett, 1998, 80(4): 688-692.?
[11]  Teufel J D, Harlow J W, Regal C A, et al. Dynamical backaction of microwave fields on a nanomechanical oscillator[J]. Phys. Rev. Lett, 2008, 101(19):197203-197207.?
[12]  Schliesser A, Rivière R, Anetsberger G, et al. Resolved-sideband cooling of a micromechanical oscillator[J]. Nat. Phys, 2008, 4(5), 415-419.?
[13]  Park Y S and Wang H L. Resolved-sideband and cryogenic cooling of an optomechanical resonator[J]. Nature phys, 2009, 5(7), 489-493.?
[14]  Li Y, Wang Y D, Xue F, et al. Quantum theory of transmission line resonator-assisted cooling of a micromechanical resonator[J]. Phys. Rev. B, 2009, 78(13), 134301-134309.?
[15]  Tian L. Ground state cooling of a nanomechanical resonator via parametric linear coupling [J]. Phys. Rev. B, 2007, 79(19):193407-193411.?
[16]  Groblacher S, Hammerer K, Michael R. et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field[J]. Nature, 2009, 460(7256):724-727.?
[17]  Dobrindt J M, Wilson-Rae I, and Kippenberg T J. Parametric normal-mode splitting in cavity optomechanics[J]. Phys. Rev. Lett, 2008, 101(26):263602-263606.?
[18]  Huang S M and G. S. Agarwal. Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity[J]. Phys. Rev. A, 2009, 80(3):033807-033814.?
[19]  Genes C, Vitali D, Tombesi P, et al. Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes[J]. Phys. Rev. A, 2008, 77(3):033804-033813.?
[20]  Biancofiore C, Karuza M, Galassi M, et. al. Quantum dynamics of a high-finesse optical cavity coupled with a thin semi-transparent membrane[J]. arXiv: 1102. 2210vl.?
[21]  Walls D F and Milburn G J, Quantum Optics[M]. Berlin: Springer-Verlag, 1998.?
[22]  Hurwitz A. In selected papers on mathematical trends in control theory[M]. New York: Dover, 1964.
[23]  DeJesus E X and Kaufman C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations[J]. Phys. Rev. A, 1987, 35(12):5288-5291.?
[24]  Gardiner C W and Zoller P. Quantum Noise[M]. Berlin: Springer-Verlag, 1991.?
[25]  Giovannetti V and Vitali D, Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion[J]. Phys. Rev. A, 2001, 63(2):023812-023820.?
[26]  Dantan A, Genes C, Vitali D, et al. Self-cooling of a movable mirror to the ground state using radiation pressure[J]. Phys. Rev. A, 2008, 77(1): 011804-011808.?
[27]  Weisbuch C, Nishioka M, Ishikawa A, and Arakawa Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity[J]. Phys. Rev. Lett, 1992, 69(23), 3314--3317.?
[28]  Wallraff A, Schuster D I, Blais A, et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[J]. Nature, 2004, 431(7005), 162-167.?
[29]  Thompson R J, Rempe G. and Kimble H J. Observation of normal-mode splitting for an atom in an optical cavity[J]. Phys. Rev. Lett, 1992, 68(8), 1132--1135.?
[30]  Fleischhauer M, Imamoglu A, and Marangos J P. Electromagnetically induced transparency: Optics in coherent media[J]. Rev. Mod. Phys, 2005, 77(2), 633-673.?
[31]  He W, Li J J, and Zhu K D. Coupling-rate determination based on radiation-pressure-induced normal mode splitting in cavity optomechanical systems[J]. Opt. Lett, 2010, 35(3), 339-341.?
[32]  Corbitt T, Wipf C, Bodiya T. et al. Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK[J]. Phys. Rev. Lett, 2007, 99(16), 160801-160804.?
[33]  Verlot P, Tavernarakis A, T Briant, et al. Backaction amplification and quantum limits in optomechanical measurements[J]. Phys. Rev. Lett, 2010, 104(13):133602-133606.
[34]  Markus A, Simon G, Klemens H, et al. Quantum optomechanics---throwing a glance[J]. J. Opt. Soc. Am. B, 2010, 27(6): A189-A197.
[35]  J?hne K, Genes C, Hammerer K, et. al. Cavity-assisted squeezing of a mechanical oscillator[J]. Phys. Rev. A, 2008, 79(6), 063819-063826.?
[36]  LaHaye M D, Buu O, Camarota B, et al. Approaching the quantum limit of a nanomechanical resonator[J]. Science, 2004, 304(5667):74-77.?
[37]  Ekinci K L, Yang Y T and Roukes M L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems[J], J. Appl. Phys, 2004, 95(5), 2682-2689.?
[38]  Caves C M. Quantum-mechanical radiation-pressure fluctuations in an interferometer[J], Phys. Rev. Lett, 1980, 45(2), 75-79.?

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133