全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Stark位移对混态J-C模型中熵和纠缠的影响

, PP. 441-447

Keywords: 量子光学,纠缠,共生纠缠度,量子约化熵,Stark位移,Jaynes-Cummings模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

考虑一个二能级原子与单模热光场经由双光子过程耦合,采用量子约化熵研究了原子和场的约化熵变化规律,用共生纠缠度(Concurrence)研究了原子与场之间的纠缠演化。借助于数值计算方法,详细分析了在混态J-C模型中,Stark位移和平均光子数对约化熵变和纠缠的影响。结果表明在Stark位移影响下,原子和光场的约化熵变化量均减小。选择适当的原子初态,可以使得原子的约化熵和光场的约化熵发生交换。此外,考虑Stark位移时,原子与光场之间纠缠的最小值增大,原子与光场不再出现退纠缠态。

References

[1]  Briegel H J, et al. Quantum repeaters: the role of imperfect local operations in quantum communication [J]. Phys. Rev. Lett., 1998, 81: 5932-5935.
[2]  Alsingh P, et al. Collapse and revivals in a two-photon absorption process [J]. J. Opt. Soc. Am. B, 1987, 4(2): 177-184.
[3]  Chotorlishvili L, et al. Two-photon-driven nonlinear dynamics and entanglement of an atom in a nonuniform cavity [J]. Phys. Rev. A, 2011, 84: 013825.
[4]  Wu Ying, Yang Xiaoxue. Strong-coupling theory of periodically driven two-level systems [J]. Phys Rev. Lett., 2007, 98: 013601.
[5]  Fang Maofang, et al. Influence of the Stark shift on the evolution of field entropy and entanglement in two-photon processes [J]. Phys. Lett. A, 1996, 210: 11-20.
[6]  Tang Zhixiang, Chen Qiucheng, Zhang Dengyu. Elimination of the two-level atom’s decoherence of two-photon Jaynes-Cummings mode with Stark shift [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2004, 21(6): 819-823 (in Chinese).
[7]  P hoenix S J D, et al. Fluctuations and entropy in models of quantum optical resonance [J]. Ann. Phys. (N.Y.), 1988, 186(2): 381~407.
[8]  Boukobza E, et al. Entropy exchange and entanglement in the Jaynes-Cummings model [J]. Phys. Rev. A, 2005, 71(6): 063821.
[9]  Zhang Jian, Shao Bin, Zou Jian. Entropy Exchange and Entanglement in Superconducting Charge Qubit Inside a Resonant Cavity with Intrinsic Decoherence [J]. Commun. Theor. Phys., 2008, 49(6): 1463~1467.
[10]  Hünkar K. Entropy Correlations and Entanglement of a Superconducting Charge Qubit in a Resonant Cavity in the Presence of Noise [J]. Commun. Theor. Phys.,2011, 56(1): 139~143.
[11]  Zhang Yuqing, Tan Lei, Zhu Zhonghua, et al. Partial entropy change and entanglement in the mixed state for a Jaynes-Cummings model with Kerr medium [J]. Chin. Phys. B, 2010, 19(2): 024210.
[12]  Guo Jinliang, Sun Yubao, Li Zaidong. Entropy exchange and entanglement in Jaynes-Cummings model with Kerr-like medium and intensity-depend coupling [J]. Opt. Commun., 2011, 284: 896– 901.
[13]  Nielsen M, Chuang I. Quantum Information and Computation [M]. Cambridge: Cambridge University Press, 2000.
[14]  Yu T, Eberly J H. Finite-time disentanglement via spontaneous emission [J]. Phys. Rev. Lett, 2004, 93: 140404.
[15]  Abdel-Aty M, et al. Sudden death and long-lived entanglement of two trapped ions [J]. Phys. Lett. A , 2007, 369: 372-376.
[16]  Fan Zhaoyang, Wang Zhongjie. Influence of laser intensity fluctuations on entanglement of two trapped ions [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2011, 28(5): 577-582 (in Chinese).
[17]  He Daiguo, Dong Yuli, Fang Jianxing, et al. Entangled coherent states:generation [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2011, 28(4): 407-413 (in Chinese).
[18]  Wang Zhongchun, Shen Fahua, Liu Chenglin. Sudden death and sudden birth of atomic entanglement in double Jaynes-Cummings model composed of two coupled cavities [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2011, 28(1): 65-72 (in Chinese).
[19]  Nasreen, et al. Effect of the dynamic Stark shift on dipole squeezing in two-photon processes [J]. Phys. Rev. A, 1992, 46: 4161-4166.
[20]  Bose S, et al. Subsystem purity as an enforcer of entanglement [J]. Phys. Rev. Lett., 2001, 87(5): 050401.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133