全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

在介观RLC电路中通过量子菲涅尔变换获得压缩机制和压缩态

, PP. 445-449

Keywords: 量子光学,有序算符正规乘积的积分,菲涅耳算符,压缩态,量子介观RLC电路

Full-Text   Cite this paper   Add to My Lib

Abstract:

按照有序算符内积分技术,时间演化算符可以表示为坐标-动量相位空间中经典变换的量子映射。依据已经提出的LC电路量子化方案所得到的哈密顿量,推广应用到LCR(电阻、电容和电感)电路量子化方案并得到相应哈密顿量。借助相应的理论计算,可以发现在量子化的LCR(电阻、电容和电感)电路中存在压缩机制。利用有序算符内积分技术和量子菲涅耳变换关系,可以进一步推导出量子介观LCR电路中相应压缩态的简明形式。

References

[1]  W.H. Louisell, Quantum Statistical Properties of Radiation, John Wiley, 1973, NewYork
[2]  F. A. Buot, Mesoscopic physics and nanoelectronics: nanoscience and nanotechnology, Phys. Rep. 234(1993)73
[3]  J. S. Wang, J. Feng and M. S. Zhan, Quantum fluctuations of a non-dissipative mesoscopic inductance coupling circuit in a displaced squeezed Fock state, Phys. Lett. A 281(2001)341
[4]  J. S. Wang, T. K. Liu and M. S. Zhan, Coulomb blockade and quantum fluctuations of mesoscopic inductance coupling circuit, Phys. Lett. A 276(2000)155
[5]  H. Y. Fan, and B. L .Liang, Number-Phase Quantization Scheme for L-C Circuit, Commun. Theor. Phys. 48(2007)1038
[6]  H. Y. Fan and X. Y. Pan, Quantization and Squeezed State of Two L-C Circuits with Mutual-Inductance, Chin .Phys. Lett. 15(1998)625
[7]  [7 ] H. Y. Fan, Y. Fan and T. Q. Song, Quantum theory of mesoscopic electric circuits inentangled state representation, Phys. Lett. A 305(2002)222
[8]  H. Y. Fan and Hu L. Y, Relation between Fresnel transform of input light field and the two-parameter Radon transform of Wigner function of the field, Chin. Phys. B 18(2009)611
[9]  H. Y. Fan and Hu L. Y., Optical Fresnel transformation and quantum tomography, Opt. Com-mun. 282(2009)3734
[10]  H. Y. Fan, H. L. Lu, Y. Fan, Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations, Ann. Phys. 321(2006)480
[11]  X. L. Xu, Hong-qi Li and Hong-yi Fan, Multiplication rule for the Collins diffraction formula obtained by virtue of the Fresnel operator in quantum optics theory, J. Mod. Opt. 59(2012)157
[12]  J .R. Klauder, Coherent States, WorldScientific, Singapore, 1985
[13]  R. J. Glauber, Coherent and Incoherent States of the Radiation Field, Phys. Rev. 131(1963)2766

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133