[1] | vitali D, Gigan S, Ferreira A, et al. Optomechanical entanglement between a movable mirror and a cavity field
|
[2] | [J]. Phys. Rev. Lett, 2007, 98:030405.
|
[3] | [J]. Phys. Rev. A, 2009, 80:033807.
|
[4] | Liao J Q and Law C K. Parametric generation of quadrature squeezing of mirrors in cavity optomechanics
|
[5] | [J]. Phys. Rev. A, 2011, 83:033820.
|
[6] | Miao H, Zhao C, Ju L, et al. Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions
|
[7] | [J]. Phys. Rev. A, 2009, 79:063801.
|
[8] | Caves C M. Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer
|
[9] | [J]. Phys. Rev. Lett, 1980, 45:75.
|
[10] | Corbitt T, et al. Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity
|
[11] | [J]. Phys. Rev. A, 2006, 74:021802.
|
[12] | Zhou Ling, Han Yan, et al. Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence
|
[13] | [J]. Phys. Rev. A, 2011, 83:052117.
|
[14] | Xiao Rui-jie, Pan Gui-xia, and Zhou Ling. Entanglement of two movable mirrors and two-mode cavity fields generated by a single four-level atom
|
[15] | [J]. Phys. J. D, 2013, 30519.
|
[16] | Ma Yong-Hong and Zhou Ling. Enhanced entanglement between a movable mirror and a cavity field assisted by two-level atoms
|
[17] | [J]. J. Appl. Phys, 2012, 111:103109.
|
[18] | Scully M O and Zubairy M S. Quantum Optics
|
[19] | [M].Cambridge Univ. Press, 1997.
|
[20] | Dejesus E X and Kaufman C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations
|
[21] | [J]. Phys. Rev. A, 1998, 35:5288.
|
[22] | Adesso G, et al, Extremal entanglement and mixedness in continuous variable systems
|
[23] | [J]. Phys. Rev. A, 2004,70:022318.
|
[24] | Simon R. Peres-Horodecki Separability Criterion for Continuous Variable Systems
|
[25] | [J]. Phys. Rev. Lett. 2000 84:2726.
|
[26] | Gr?blscher S, Hammerer K, Vanner M R, et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field
|
[27] | [J]. Nature (London) 2009, 460:724.
|
[28] | Genes C, Mari A, Tombesi P, et al. Robust entanglement of a micromechanical resonator with output optical fields
|
[29] | [J]. Phys. Rev. A 2008, 78:032316.
|
[30] | Huang S and Agarwal G S, Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light
|
[31] | [J]. New J. Phys, 2009, 11: 103044.
|
[32] | Aoki T, Dayan B, Wilcut E, et al. Observation of strong coupling between one atom and a monolithic microresonator
|
[33] | [J]. Nature (London) 2006, 443:671.
|
[34] | Gigan S, B?hm H R, Paternostro M, et al. Self-cooling of a micromirror by radiation pressure
|
[35] | [J].Nature (London) 2006, 444:67–70.
|
[36] | Marquardt F, Chen J P, Clerk A A, et al. Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion
|
[37] | [J]. Phys. Rev. Lett, 2007, 99:093902.
|
[38] | Bouwmeester D, Ekert A, and Zeilinger A. The physics of quantum information
|
[39] | [M]. Berlin:Springer, 2000.
|
[40] | Esteve D, Raimond J M and Dalibard J. Quantum entanglement and information processing
|
[41] | [M]. Amsterdam:Elsevier, 2003.
|
[42] | Joshi C, Larson J, Jonson M, et al. Entanglement of distant optomechanical systems
|
[43] | [J].phys. Rev. A, 2012, 85:033805.
|
[44] | Huang S and Agarwal G S. Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity
|