全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

原子介质诱导的纠缠

, PP. 273-278

Keywords: 量子光学,光机械系统,原子介质,哈密顿,纠缠

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一个利用原子介质在光机械系统中产生纠缠的方案。研究结果表明,当腔场和原子介质间的耦合系数取合适值时,腔场和动镜,镜子与原子,以及腔场和原子之间都是纠缠的。此外,文章考虑了腔场耗散效应,并给出用“logarithmicnegativity”去度量系统纠缠的数值解。

References

[1]  vitali D, Gigan S, Ferreira A, et al. Optomechanical entanglement between a movable mirror and a cavity field
[2]  [J]. Phys. Rev. Lett, 2007, 98:030405.
[3]  [J]. Phys. Rev. A, 2009, 80:033807.
[4]  Liao J Q and Law C K. Parametric generation of quadrature squeezing of mirrors in cavity optomechanics
[5]  [J]. Phys. Rev. A, 2011, 83:033820.
[6]  Miao H, Zhao C, Ju L, et al. Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions
[7]  [J]. Phys. Rev. A, 2009, 79:063801.
[8]  Caves C M. Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer
[9]  [J]. Phys. Rev. Lett, 1980, 45:75.
[10]  Corbitt T, et al. Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity
[11]  [J]. Phys. Rev. A, 2006, 74:021802.
[12]  Zhou Ling, Han Yan, et al. Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence
[13]  [J]. Phys. Rev. A, 2011, 83:052117.
[14]  Xiao Rui-jie, Pan Gui-xia, and Zhou Ling. Entanglement of two movable mirrors and two-mode cavity fields generated by a single four-level atom
[15]  [J]. Phys. J. D, 2013, 30519.
[16]  Ma Yong-Hong and Zhou Ling. Enhanced entanglement between a movable mirror and a cavity field assisted by two-level atoms
[17]  [J]. J. Appl. Phys, 2012, 111:103109.
[18]  Scully M O and Zubairy M S. Quantum Optics
[19]  [M].Cambridge Univ. Press, 1997.
[20]  Dejesus E X and Kaufman C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations
[21]  [J]. Phys. Rev. A, 1998, 35:5288.
[22]  Adesso G, et al, Extremal entanglement and mixedness in continuous variable systems
[23]  [J]. Phys. Rev. A, 2004,70:022318.
[24]  Simon R. Peres-Horodecki Separability Criterion for Continuous Variable Systems
[25]  [J]. Phys. Rev. Lett. 2000 84:2726.
[26]  Gr?blscher S, Hammerer K, Vanner M R, et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field
[27]  [J]. Nature (London) 2009, 460:724.
[28]  Genes C, Mari A, Tombesi P, et al. Robust entanglement of a micromechanical resonator with output optical fields
[29]  [J]. Phys. Rev. A 2008, 78:032316.
[30]  Huang S and Agarwal G S, Entangling nanomechanical oscillators in a ring cavity by feeding squeezed light
[31]  [J]. New J. Phys, 2009, 11: 103044.
[32]  Aoki T, Dayan B, Wilcut E, et al. Observation of strong coupling between one atom and a monolithic microresonator
[33]  [J]. Nature (London) 2006, 443:671.
[34]  Gigan S, B?hm H R, Paternostro M, et al. Self-cooling of a micromirror by radiation pressure
[35]  [J].Nature (London) 2006, 444:67–70.
[36]  Marquardt F, Chen J P, Clerk A A, et al. Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion
[37]  [J]. Phys. Rev. Lett, 2007, 99:093902.
[38]  Bouwmeester D, Ekert A, and Zeilinger A. The physics of quantum information
[39]  [M]. Berlin:Springer, 2000.
[40]  Esteve D, Raimond J M and Dalibard J. Quantum entanglement and information processing
[41]  [M]. Amsterdam:Elsevier, 2003.
[42]  Joshi C, Larson J, Jonson M, et al. Entanglement of distant optomechanical systems
[43]  [J].phys. Rev. A, 2012, 85:033805.
[44]  Huang S and Agarwal G S. Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133