全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

全固态拉曼激光器

, PP. 394-402

Keywords: 激光技术,拉曼激光器,全固态,连续运转,人眼安全

Full-Text   Cite this paper   Add to My Lib

Abstract:

全固态拉曼激光器由于具有光束质量好、波长范围广、结构紧凑、转换效率高、稳定性好等优势,在信息、交通、测量、医疗、国防、工业和农业等众多领域具有十分广泛的应用前景。目前已成为激光器件与激光技术领域的研究热点之一。本文介绍了全固态拉曼激光器的研究概况,重点介绍了我们以NdYVO4作为激光增益介质,以BaWO4、SrWO4及YVO4作为拉曼介质的连续运转和人眼安全波段的准连续运转全固态拉曼激光器方面的研究工作。最后对全固态拉曼激光器的未来发展趋势进行了展望。

References

[1]  [J]. Applied Physics B, 2007, 88(4): 539-542.
[2]  Dekker P, Pask H M, Spence D J, et al. Continuous-wave, intracavity doubled, self-Raman laser operation in Nd: GdVO4 at 586.5 nm
[3]  [J]. Optics Express, 2007, 15(11): 7038-7046.
[4]  Demidovich A A, Grabtchikov A S, Lisinetskii V A, et al. Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4) 2 laser
[5]  [J], Optics letters, 2005, 30(13): 1701-1703.
[6]  Lisinetskii V A, Grabtchikov A S, Demidovich A A, et al. Nd: KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation
[7]  [J]. Applied Physics B, 2007, 88(4): 499-501.
[8]  Chang Y T, Huang Y P, Su K W, and Chen Y F. Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for 4F3/2→4I11/2 and 4F3/2→4I13/2 transitions
[9]  [J]. Optics Express, 2008, 16(25): 21155.
[10]  Chang Y T, Su K W, Chang H L, et al. Compact efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd: YVO4 crystal as a self-Raman medium
[11]  [J]. Opics Express, 2009, 17: 4330-4335.
[12]  Fan L, Fan Y X, Wang H T. A compact efficient continuous-wave self- frequency Raman laser with a composite YVO4/Nd:YVO4/YVO4 crystal
[13]  [J]. Applied Physics B, 2010, 101(3): 493-496.
[14]  Du, C., Guo, Y., Yu, Y., Huang, G., Ruan, S. Diode-end-pumped Q-switched composite YVO4/Nd: YVO4/YVO4 crystal self-Raman second-Stokes laser
[15]  [J]. Laser Physics Letters, 2013, 10(5), 055802.
[16]  Orlovich V A, Burakevich V N, Grabtchikov A S, et al. Continuous-wave intracavity Raman generation in PbWO4 crystal in the Nd: YVO4 laser
[17]  [J]. Laser Physics Letters, 2006, 3(2): 71.
[18]  Pask H M. Continuous-wave, all-solid-state, intracavity Raman laser
[19]  [J]. Optics letters, 2005, 30(18): 2454-2456.
[20]  Dekker P, Pask H M, Piper J A. All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser
[21]  [J]. Optics letters, 2007, 32(9): 1114-1116.
[22]  Fan L, Fan Y X, Duan Y H, et al. Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser
[23]  [J] Applied Physics B, 2009, 94(4): 553-555.
[24]  Zverev P G, Basiev T T, Sobol A A, et al. Stimulated Raman scattering in alkaline-earth tungstate crystals
[25]  [J]. Quantum Electronics, 2000, 30(1): 55.
[26]  Piper J A, Pask H M. Crystalline Raman lasers
[27]  [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 692-704.
[28]  Ge W W, Zhang H J, Wang J Y, et al. Thermal and mechanical properties of BaWO4 crystal
[29]  [J]. Journal of applied physics, 2005, 98(1): 013542.
[30]  Zhang G, Jia R, Wu Q. Preparationstructural and optical properties of AWO4 (A= Ca, Ba, Sr) nanofilms
[31]  [J]. Materials Science and Engineering B, 2006, 128(1): 254-259.
[32]  Fan L, Fan Y X, Li Y Q, et al. High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal
[33]  [J]. Optics letters, 2009, 34(11): 1687-1689.
[34]  Murray J T, Powell R C, Peyghambarian N, et al. Generation of 1.5-μm radiation through intracavity solid-state Raman shifting in Ba (NO3)2 nonlinear crystals
[35]  [J]. Optics letters, 1995, 20(9): 1017-1019.
[36]  Monarski T W, Hannon S M, Gatt P. Eye-safe coherent lidar detection using a 1.5-um Raman laser
[37]  [C] //Aerospace/Defense Sensing, Simulation, and Controls. International Society for Optics and Photonics, 2001: 229-236.
[38]  Kaminskii A A, Ueda K I, Eichler H J, Kuwano Y, Kouta H., Bagaev S N, and Lu J. Tetragonal vanadates YVO4 and GdVO4-new efficient chi (3)- materials for Raman lasers
[39]  [J]. Optics communications, 2001, 194(1): 201-206.
[40]  Chen Y F. Efficient 1521-nm Nd: GdVO4 Raman laser
[41]  [J]. Optics letters, 2004, 29(22): 2632-2634.
[42]  Chen Y F. Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd: YVO4 crystal
[43]  [J]. Optics letters, 2004,29(18), 2172-2174.
[44]  Basiev T T, Sobol A A, Voronko Y K, et al. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers
[45]  [J]. Optical Materials, 2000, 15(3): 205.
[46]  Fan J D, Zhang H J, Wang J Y, et al. Growth and thermal properties of SrWO4 single crystal
[47]  [J]. Journal of applied physics, 2006, 100(6): 063513.
[48]  Ivleva L I, Basiev T T, Voronina I S, et al. SrWO4:Nd3+–new material for multifunctional lasers
[49]  [J]. Optical Materials, 2003, 23(1): 439-442.
[50]  Lan R, Ding S, Wang M, et al. A compact passively Q-switched SrWO4 Raman laser with mode-locked modulation
[51]  [J]. Laser Physics Letters, 2013, 10(2): 025801.
[52]  Jelinkova H, ?ulc J, Basiev T T, et al. Stimulated Raman scattering in Nd: SrWO4
[53]  [J]. Laser Physics Letters, 2005, 2: 4-11.
[54]  Chen X, Zhang X, Wang Q, et al. Highly efficient diode-pumped actively Q-switched Nd: YAG-SrWO4 intracavity Raman laser
[55]  [J]. Optics Letters, 2008, 33:705-707.
[56]  Smekal A. Zur quantentheorie der dispersion
[57]  [J]. Naturwissenschaften, 1923, 11(43): 873-875.
[58]  Raman C V, Krishnan K S. A new type of secondary radiation
[59]  [J]. Nature, 1928, 121(3048): 501-502.
[60]  Landsberg G S and Mandelshtam L I. Eine neue Erscheinungen bei der Lichtzerstreuung in Kristallen
[61]  [J]. Naturwiss, 1928, 16: 557-558.
[62]  Woodbury E J, Ng W K. Ruby laser operation in the near IR
[63]  [J]. proc. IRE, 1962, 50(11): 2367-&.
[64]  Zhao J, Zhang X, Guo X, et al. Diode-pumped actively Q-switched Tm, Ho: GdVO4/BaWO4 intracavity Raman laser at 2533 nm
[65]  [J]. Optics letters, 2013, 38(8): 1206-1208.
[66]  Gao Z L, Liu S D, Zhang J J, Zhang S J, Zhang W G., Wang S P, and Tao X T. A high efficiency third order Stokes Raman laser operating at 1500 nm based on a BaTeMo2O9 crystal
[67]  [J]. Laser Physics Letters, 2013, 10(12), 125403.
[68]  Grabtchikov A S, Lisinetskii V A, Orlovich V A, et al. Multimode pumped continuous-wave solid-state Raman laser
[69]  [J]. Optics letters, 2004, 29(21): 2524-2526.
[70]  Burakevich V N, Lisinetskii V A, Grabtchikov A S, et al. Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion
[71]  [J]. Applied Physics B, 2007, 86(3): 511-514.
[72]  Lee A J, Pask H M, Omatsu T, et al. All-solid-state continuous-wave yellow laser based on intracavity frequency-doubled self-Raman laser action
[73]  Jia G, Tu C, Brenier A, et al. Thermal and optical properties of Nd3+: SrWO4: a potential candidate for eye-safe 1.517 μm Raman lasers
[74]  [J]. Applied Physics B, 2005, 81: 627-632.
[75]  Fan Y X, Liu Y, Duan Y H, et al. High-efficiency eye-safe intracavity Raman laser at 1531 nm with SrWO4 crystal
[76]  [J]. Applied Physics B, 2008, 93(2-3): 327-330.
[77]  Hu C R, Slipchenko M N, Wang P, et al. Stimulated Raman scattering imaging by continuous-wave laser excitation
[78]  [J]. Optics letters, 2013, 38(9): 1479-1481.
[79]  Li R, Bauer R M, Lubeigt W. Continuous-Wave Nd: YVO4 self-Raman lasers based on the 379cm-1 and 893cm-1 shifts
[80]  [C]//Advanced Solid State Lasers. Optical Society of America, 2013: ATu3A. 41.
[81]  Demidovich A A, Grabtchikov A S, Lisinetskii V A, et al. Continuous-wave Raman generation in a diode-pumped Nd3+: KGd (WO4)2 laser
[82]  [J]. Optics letters, 2005, 30(13): 1701-1703.
[83]  Takahashi Y, Inui Y, Asano T, et al. Ultralow-threshold Continuous-wave Raman Silicon Laser Using a Photonic Crystal High-Q Nanocavity
[84]  [C]//CLEO: Science and Innovations. Optical Society of America, 2013
[85]  Li B, Yao J Q, Ding X, et al. A novel CW yellow light generated by a diode-end-pumped intra-cavity frequency mixed Nd:YVO4
[86]  [J]. Optics & Laser Technology, 2014, 56: 99-101.
[87]  Du C, Guo Y, Yu Y, et al. High power Q-switched intracavity sum-frequency generation and self-Raman laser at 559nm
[88]  [J]. Optics & Laser Technology, 2013, 47: 43-46.
[89]  Lee A J, Spence D J, Piper J A, et al. A wavelength-versatile, continuous -wave, self-Raman solid-state laser operating in the visible
[90]  [J]. Optics Express, 2010, 18(19): 20013.
[91]  Lee A J, Pask H M, Piper J A, et al. An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission
[92]  [J]. Optics Express, 2010, 18(6): 5984-5992.
[93]  Omatsu T, Lee A, Pask H. Compact yellow-orange Raman lasers
[94]  [C]. Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2013 Conference on. IEEE, 2013: 1.
[95]  Parrotta D C, Kemp A J, Dawson M D, et al. Multi-Watt, Continuous-Wave, Tunable Diamond Raman Laser with Intracavity Frequency Doubling to the Visible
[96]  [J]. 2013, IEEE Journal of Selected Topics In Quantum Electronics, 19(4): 1400108.
[97]  Granados E, Spence D J, and Mildren R P. Deep ultraviolet diamond Raman laser
[98]  [J]. Optics & Laser Technology, 2014, 58: 39-42.
[99]  [J]. Optics Express, 2011, 19(11): 10857.
[100]  Li Z H, Peng J Y, Zheng Y. CW mode-locked self-Raman 1.17 μm Nd: GdVO4 laser with a novel long cavity

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133