全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

无序光斑电势中玻色凝聚气体的安德森局域化

, PP. 576-582

Keywords: 量子光学,安德森局域化,Gross-Pitaevskii方程,无序光斑电势,玻色凝聚气体

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于Gross-Pitaevskii(G-P)平均场能量泛函,运用分步傅里叶方法研究了可控的无序光斑电势中弱相互作用玻色凝聚气体的安德森局域化。研究结果表明(1)类高斯指数型的试探函数在变分分析过程中取得了预期效果。(2)无序度η为1,相互作用强度κ为0.1的条件下,当电势特征强度Vs大于0.6倍化学势(0.6μ)时,凝聚气体在演化过程中能够保持稳定的局域化状态。(3)较大的原子间相互作用(κ大于5)对安德森局域化的稳定性产生不利影响。(4)Vs为0.6μ,κ为0.1的条件下,光斑电势的无序度η越大,凝聚气体的安德森局域化越明显。

References

[1]  Anderson P W. Absence of diffusion in certain random lattices[J]. Physical review, 1958, 109(5): 1492.
[2]  Billy J, Josse V, Zuo Z, et al. Direct observation of Anderson localization of matter waves in a controlled disorder[J]. Nature, 2008, 453(7197): 891-894.
[3]  Roati G, D’Errico C, Fallani L, et al. Anderson localization of a non-interacting Bose-Einstein condensate[J]. Nature, 2008, 453(7197): 895-898.
[4]  Sucu S, Aktas S, Okan S E, et al. Anderson localization in optical lattices with speckle disorder[J]. Physical Review A, 2011, 84(6): 065602.
[5]  Piraud M, Lugan P, Bouyer P, et al. Localization of a matter wave packet in a disordered potential[J]. Physical Review A, 2011, 83(3): 031603.
[6]  Piraud M, Aspect A, Sanchez-Palencia L. Anderson localization of matter waves in tailored disordered potentials[J]. Physical Review A, 2012, 85(6): 063611.
[7]  Lugan P, Aspect A, Sanchez-Palencia L, et al. One-dimensional Anderson localization in certain correlated random potentials[J]. Physical Review A, 2009, 80(2): 023605.
[8]  Adhikari S K, Salasnich L. Localization of a Bose-Einstein condensate in a bichromatic optical lattice[J]. Physical Review A, 2009, 80(2): 023606.
[9]  Cheng Y, Adhikari S K. Matter-wave localization in a random potential[J]. Physical Review A, 2010, 82(1): 013631.
[10]  Jendrzejewski F, Bernard A, Mueller K, et al. Three-dimensional localization of ultracold atoms in an optical disordered potential[J]. Nature Physics, 2012, 8(5): 398-403.
[11]  Buitrago C A G, Adhikari S K. Mean-field equations for cigar-shaped and disc-shaped Bose and Fermi superfluids[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42(21): 215306.
[12]  Muruganandam P, Adhikari S K. Fortran programs for the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap[J]. Computer Physics Communications, 2009, 180(10): 1888-1912.
[13]  徐志君, 施建青, 李珍等. 基于G-P能量泛函求解谐振势阱中玻色凝聚气体基态波函数[J]. 物理学报, 2006, 55(7): 3265-3271.
[14]  Bao W, Du Q. Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow[J]. SIAM Journal on Scientific Computing, 2004, 25(5): 1674-1697.
[15]  Sanchez-Palencia L, Clément D. Disorder-induced trapping versus Anderson localization in Bose–Einstein condensates expanding in disordered potentials[J]. New Journal of Physics, 2008, 10(4): 045019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133