K?nz F, Frenz M, et al. Active and passive Q-switching of a 2.79μm Er: Cr: YSGG laser [J]. Optics Communications, 1993, 103(5,6): 398-404.
[2]
Wang T J, He Q Y, Gao J Y, et al. Efficient electrooptically Q-switched Er:Cr:YSGG laser oscillator-amplifier with a Glan-Taylor prism polarizer [J]. Laser Physics, 2006, 16(12): 1605-1609.
[3]
Wang T J, He Q Y, Gao J Y, et al. Comparison of electrooptically Q -switched Er:Cr:YSGG lasers by two polarizers: Glan-Taylor prism and Brewster angle structure [J]. Laser Physics Letters, 2006, 3(7): 349-352.
[4]
Liu J S, et al. Cr,Er:Y2.93Sc1.43Ga3.64O12 laser giant pulse generation at 2.79μm using electro-optic Q-switch [J]. Chinese Physics Letters, 2008, 25(4): 1293-1296.
[5]
Maak P, Jakab L, et al. Efficient acousto-optic Q switching of Er:YSGG lasers at 2.79μm wavelength [J]. Applied Optics, 2000, 39(18): 3053-3059.
[6]
Skorczakowski M, et al. Mid-infrared Q-switched Er:YAG laser for medical applications [J]. Laser Physics Letters, 2010, 7(7): 498-504.
[7]
Luo Jianqiao, Sun Dunlu, et al. Growth and LD pumped laser performance of Er:YSGG Mid-IR laser crystal [J]. Journal Of Synthetic Crystals (人工晶体学报), 2012, 41(3): 564-567 (in Chinese).
[8]
Huang Li, Guo Qiang, et al. Spectroscopic properties analysis and laser characteristic simulation of Er:GSGG crystal [J]. Chinese Journal Of Quantum Electronics (量子电子学报), 2012, 29(1): 45-51 (in Chinese).
[9]
Koechner W. Solid-State Laser Engineering (固体激光工程). Beijing: Science Press, 2002, 410-415 (in Chinese).
[10]
Li Fuli. Best working conditions of rotating mirror Q-switched four-level laser [J]. Chinese Journal of Laser (中国激光), 1975, 2(1): 11-17 (in Chinese).
[11]
Midwinter J E. The theory of Q-switching applied to slow switching and pulse shaping for solid state lasers [J]. British Journal of Applied Physics, 1965, 16(8): 1125-1133.
[12]
Xu Rongfu, Wei Guanghui. Design and accurate analysis of rotating mirror Q-switched system [J]. Laser Technology (激光技术), 1978, 1(1):3-14 (in Chinese).
[13]
Flock S, et al. Er:YAG laser-induced changes in skin in vivo and transdermal drug delivery [C]. //SPIE, Conference on Lasers in Surgery-Advanced Characterization, Therapeutics, and Systems VII, 1997, 2970: 374-379.
[14]
Vodopyanov K L. Megawatt peak power 8-13 μm CdSe optical parametric generator pumped at 2.8 μm [J]. Optics Communications, 1998, 150(1-6): 210-212.
[15]
Meng Xianfeng, Lu Chunhua, et al. Application and protection of laser technology [J]. Infrared and Laser Engineering (红外与激光工程), 2005, 34(2): 136-141 (in Chinese).
[16]
Liu Jinsheng. Development of 2.79μm Cr,Er:YSGG solid state laser technology [J]. Infrared and Laser Engineering (红外与激光工程), 2008, 37(2): 217-225 (in Chinese).
[17]
Al’bers P, Ostroumov V G, et al. Low threshold YSGG:Cr:Er laser for the 3μm range with a high pulse repetition frequency [J]. Soviet Journal of Quantum Electronics, 1988, 18(5): 558-559.
[18]
Stoneman R C, Lynn J G, et al. Direct upper-state pumping of the 2.8μm Er3+:YLF laser [J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1041-1045.
[19]
Stoneman R C, et al. Efficient resonantly pumped 2.8μm Er3+:GSGG laser [J]. Optics Letters, 1992, 17(11): 816-818.
[20]
Tempus M, Luthy W, et al. 2.79μm YSGG:Cr:Er laser pumped at 790nm [J]. IEEE Journal of Quantum Electronics, 1994, 30(11): 2608-2611.
[21]
Dinerman B J, et al. 3μm cw operations in erbium-doped YSGG,GGG and YAG [J]. Optics Letters, 1994, 19(15): 1143-1145.