全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

BP改进算法及其在路面裂缝检测中的应用

, PP. 46-53

Keywords: 道路工程,BP神经网络,BP改进算法,路面裂缝,自动检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统BP算法抗干扰能力差、学习速率慢且易陷入局部极小值等缺点,提出了一种基于变更传递函数倾斜度和动态调节不同学习速率的BP改进算法,给出了一种新的传递函数,设计了复合误差函数,同时采用了一种分层动态调整不同学习率的新方法,以加快传统BP算法的收敛速度和避免陷入局部极小值,并对路面裂缝图像进行了试验,比较了BP改进算法与传统BP算法在裂缝检测中的性能参数。试验结果表明,BP改进算法将全局均方误差减小了0.8125,检测速度提高了30%,能够充分满足路面裂缝自动检测的实时性要求,是一种行之有效的方法。

References

[1]  肖旺新,张 雪,黄 卫.基于小波神经网络的路面破损识别[J].上海公路,2004(2):22-25. XIAO Wang-xin,ZHANG Xue,HUANG Wei.Preliminary study of pavement surface distress automation recognition based on wavelet neural network[J].Shanghai Highway,2004(2):22-25.
[2]  杨志晓,冯冬青,陈铁军,等.人工神经网络技术在无损检测中的应用[J].无损检测,2002,24(6):244-249,252. YANG Zhi-xiao,FENG Dong-qing,CHEN Tie-jun,et al.Application of artificial neural networks to nondestructive testing[J].Nondestructive Testing,2002,24(6):244-249,252.
[3]  王 越,曹长修.BP网络局部极小产生的原因分析及避免方法[J].计算机工程,2002,28(6):35-36,82. WANG Yue,CAO Chang-xiu.Analysis of local minimization for BP algorithm and its avoidance methods[J].Computer Engineering,2002,28(6):35-36,82.
[4]  Bai Y P,Zhang H X,Hao Y L.The performance of the back propagation algorithm with varying slope of the activation function[J].Chaos,Solitons & Fractals,2007,33(7):1-9.
[5]  Jiang M H,Georges G,Deng B X,et al.A fast learning algorithm for time-delay neural networks[J].Information Sciences,2002,24(3):27-39.
[6]  Kamarthi S V,Pittner S.Accelerating neural network training using weight extrapolations[J].Elsevier Science on Neural Networks,2000,12(6):1285-1299.
[7]  Martin F,Moller S.A scaled conjugate gradient algorithm for fast supervised learning[J].Neural Networks,2000,6(3):525-633.
[8]  Yan W P,Diao C F,Tang Z N,et al.The study of gas sensor array signal processing with improved BP algorithm[J].Sensors and Actuators B,2000,66(7):283-285.
[9]  丁爱玲,焦李成.基于支撑矢量机的路面破损识别[J].长安大学学报:自然科学版,2007,27(2):34-37. DING Ai-ling,JIAO Li-cheng.Automation of recogniting pavement surface distress based on support vector machine[J].Journal of Chang'an University:Natural Science Edition,2007,27(2):34-37.
[10]  Cheng H D,Rong J.Novel approach to pavement cracking detection based on fuzzy set theory[J].Journal of Computing in Civil Engineering,1999,13(4):270-280.
[11]  张 娟,沙爱民,孙朝云,等.基于相位编组法的路面裂缝自动识别[J].中国公路学报,2008,21(2):39-42. ZHANG Juan,SHA Ai-min,SUN Zhao-yun,et al.Pavement crack automatic recognition based on phase-grouping method[J].China Journal of Highway and Transport,2008,21(2):39-42.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133