全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于脉冲耦合神经网络的路面裂缝提取

, PP. 33-37

Keywords: 道路工程,公路路面裂缝,脉冲耦合神经网络,数字形态学,图像分割

Full-Text   Cite this paper   Add to My Lib

Abstract:

考虑裂缝比路面背景更暗的特点,采用结合赋时矩阵的脉冲耦合神经网络模型,实现了路面图像分割和裂缝的粗提取;利用裂缝比杂质面积大的特点,提出一种基于数字形态学的连通区域提取算法,通过计算每个区域包含的像素数量,采用阈值方法剔除杂质,实现裂缝的精提取。研究结果表明脉冲耦合神经网络裂缝粗提取方法的平均检测率和虚检率分别为92.43%和47.67%;综合方法平均检测率和虚检率分别为91.1%和7.68%,显著提高了路面裂缝检测的准确性。

References

[1]  Cheng H D,Miyojim M.Automatic pavement distress detection system[J].Journal of Information Sciences,1998,108(1):219-240.
[2]  李晋惠.用图像处理的方法检测公路路面裂缝类病害[J].长安大学学报:自然科学版,2004,24(3):24-29. LI Jin-hui.Pavement crack diseases detecting by image processing algorithm[J].Journal of Chang'an University:Natural Science Edition,2004,24(3):24-29.
[3]  丁爱玲,焦李成.基于支撑矢量机的路面破损识别[J].长安大学学报:自然科学版,2007,27(2):34-37. DING Ai-ling,JIAO Li-cheng.Automation of recognizing pavement surface distress based on support vector machine[J].Journal of Chang'an University:Natural Science Edition,2007,27(2):34-37.
[4]  樊海玮,张国翊,丁爱玲,等.BP改进算法及其在路面裂缝检测中的应用[J].长安大学学报:自然科学版,2010,30(1):46-53. FAN Hai-wei,ZHANG Guo-yi,DING Ai-ling,et al.Improved BP algorithm and its application in detection of pavement crack[J].Journal of Chang'an University:Natural Science Edition,2010,30(1):46-53.
[5]  Wang Z B,Ma Y D,Cheng F Y,et al.Review of pulse-coupled neural networks[J].Image and Vision Computing,2010,28(1):5-13.
[6]  马义德,李 廉,王亚馥,等.脉冲耦合神经网络原理及其应用[M].北京:科学出版社,2006.
[7]  Gonzalez R C,Woods R E.Digital image processing[M].3rd Edition.New Jersey:Prentice Hall,2008.
[8]  Eckhorn R,Reitboeck H J,Arndt M,et al.Feature linking via synchronization among distributed assemblies:simulation of results from cat cortex[J].Neural Computation,1990,2(3):293-307.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133