全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于XFEM的损伤扩展模拟

, PP. 68-72

Keywords: 力学,XFEM,数值方法,ABAQUS,裂纹扩展模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

材料裂缝的扩展是一个经典的不连续问题,采用常规的有限元方法难以实现裂缝扩展过程的仿真模拟。为了解决常规方法的诸多弊端,XFEM方法引入水平集函数描述裂缝形态,实现了裂缝在单元内部的萌生与发展,解决了传统方法只能依赖单元生死来模拟裂缝扩展的难题。在扩展有限元方法基本原理的基础上,以ABAQUS为平台,利用XFEM方法模拟了弹性力学经典解中的有限大平板的裂缝问题,验证了XFEM方法的有效性;同时,模拟了三点弯梁的裂缝扩展过程。结果表明扩展有限元方法能够有效地进行开裂过程仿真,逼真地模拟出裂缝的扩展行为,不受单元边界的制约,无需单元的局部加密,有效地减少了单元数量,节约了计算成本,为解决实际复杂问题提供了方便的途径。

References

[1]  Daux C,Moёs N,Dolbow S,et al.Arbitrary branched and intersecting cracks with the extended finite element method[J].International Journal for Numerical Methods in Engineering,2000(48):1741-1760.
[2]  Duan Q,Song J H,Menouillard T,et al.Element-local level set method for three-dimensional dynamic crack growth[J].International Journal for Numerical Methods in Engineering,2009,80(12):1520-1543.
[3]  Giner E,Sukumar N,Tarancon J E,et al.An Abaqus implementation of the extended finite element method[J].Engineering Fracture Mechanics,2009,76(3):347-368.
[4]  徐芝纶.弹性力学[M].北京:高等教育出版社,2006. XU Zhi-lun.Easticity[M].Beijing:Higher Education Press,2006.(in Chinese)
[5]  Ribeaucourt R,Baietto-Dubourg M C,Grarouil A.A new fatigue frictional contact crack propagation modle with the coupled X-FEM/LATIN method[J].Computer Methond in Applied Mechanics and Engineering,2007,196(33-34):3230-3247.
[6]  Mescbke G,Dumstorff P.Energy-based modeling of cohesive and cohesionless cracks via XFEM[J].Computer Methond in Applied Mechanics and Engineering,2007,196(21-24):2338-2357.
[7]  Tada H,Paris P C,Irwin G R.The stress analysis of cracks handbook(third edition)[M].Newyork:ASME Press,1985.
[8]  方修君,金 峰.基于ABAQUS平台的扩展有限元法[J].工程力学,2007,24(7):6-10. FANG Xiu-jun,JIN Feng.Extended finite element method based on ABAQUS[J].Engineering Mechanics,2007,24(7):6-10.(in Chinese)
[9]  Zienkiewicz O C,Taylor R L.The finite element method(fifth edition)[M].Beijing:Tsinghua University Press,2006.
[10]  庄 茁,柳占立,成彬彬,等.扩展有限单元法[M]. 北京:清华大学出版社,2012. ZHUANG Zhuo,LIU Zhan-li,CHENG Bing-bing,et al.Extend finite element method[M].Beijing:Tsinghua University Press,2012.(in Chinese)
[11]  Sukumar N,Chopp D L,Moёs N,et al.Modeling holes and inclusions by level sets in the extended finite-element method[J].Computer Methods in Applied Mechanics and Engineering,2001,190(46/47):6183-6200.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133