全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双群体伪并行差分进化算法研究及应用

Keywords: 双群体,差分进化算法,平均熵,参数估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高差分进化算法的全局搜索能力和收敛速率,本文提出了一种双群体伪并行差分进化算法.该算法结合差分进化算法DE/best/2/bin变异方式局部搜索能力强、收敛速度快,和DE/rand/1/bin变异方式全局搜索能力强、鲁棒性好的特点,采用串行算法结构实现并行差分进化算法独立进化、信息交换的思想.为使初始化个体均匀分布在搜索空间,提高算法收敛到全局最优解的鲁棒性,提出了一种基于平均熵的初始化策略.典型Benchmarks函数测试和非线性系统模型参数估计结果表明,该方法能显著提高算法的收敛速率和全局搜索能力.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133