|
控制理论与应用 2008
运用异质传感器信息融合的移动机器人自定位DOI: 10.7641/j.issn.1000-8152.2008.5.016 Keywords: 移动机器人,扩展卡尔曼滤波,神经网络,信息融合,自定位 Abstract: 采用单类、单一传感器很难获得移动机器人的准确定位.为此,运用异质传感器信息融合来提高定位精度.首先,建立机器人运动方程和CCD摄像机观测模型.然后,利用扩展卡尔曼滤波器进行状态估计,选择Q,R矩阵抑制系统的模型噪声和量测噪声,并实现移动机器人的自定位.接着,建立超声波传感器的观测模型,获得机器人的自定位信息.最后,运用BP神经网络,将两种自定位信息进行融合,实现两类传感器的优缺点互补.仿真实验表明,运用异质传感器信息融合能明显地提高移动机器人的自定位精度.
|