全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

原子力显微镜中微悬臂梁分布参数系统的Hammerstein模型
Hammerstein model for distributed parameter system of micro-cantilever in atomic-force microscope

DOI: 10.7641/CTA.2015.40589

Keywords: 原子力显微镜 最小二乘向量机 Hammerstein模型 分布参数 系统辨识
atomic force microscope least-squares vector machine Hammerstein model distributed parameter system identification

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高原子力显微镜(atomic force microscope, AFM)中微悬臂梁分布参数模型的精度, 本文提出了包含非 线性时空特性的改进模型, 在此基础上简化控制器的结构. 首先加入非线性补偿项修正传统分布参数模型; 然后采 用Karhunen-Loève(K–L)方法提取系统主导空间基函数, 实现系统输出的时空变量分离. 利用求解得到的时间系数 和系统激励, 建立系统时域Hammerstein模型, 使系统无限维偏微分方程模型转化为时域有限维常微分方程形式, 控 制器的设计无需考虑空间耦合的影响; 最后, 利用最小二乘支持向量机结合奇异值分解法辨识模型中的参数. 与传 统分布参数模型进行仿真和实验结果比较, 验证了方法的有效性.
To improve the accuracy of the distributed-parameter model of the micro-cantilever in an atomic-force microscope (AFM), we propose a modified model which contains the nonlinear spatial-temporal properties. On this basis, the structure of the controller is simplified and a nonlinear compensation term is added to correct the traditional distributed parameter model. Next, the Karhunen-Loève (K–L) decomposition method is applied to extract the dominant spatial basis function of the system, achieving the space-time decomposition. Then, a temporal Hammerstein model is identified by the temporal coefficients obtained from the decomposition and the input signal, which transforms the infinite dimensional partial differential equation model into the finite-dimensional ordinary differential equation model, making it possible to design the controller without considering the space coupling. Finally, we use the leas t-squares-support-vector-machine algorithm and the singular-value decomposition method to identify the parameters of the model. Simulation and experimental comparisons with the traditional distributed parameter model are given to validate the effectiveness of the proposed method.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133