全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于随机加速对偶下降算法的分布式网络流量优化

Keywords: 加速对偶下降算法,随机加速对偶下降(ADD)算法,网络优化,收敛速率

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的分布式网络流量优化问题大都通过对偶梯度下降算法来解决,虽然该算法能够以分布式方式来实现,但其收效速度较慢。加速对偶下降(accelerateddualdescent,ADD)算法通过近似牛顿步长的分布式计算,提高了对偶梯度下降算法的收敛速率。但由于通信网络的不确定性,在约束不确定时,该算法的收敛性难以保证。基于此,提出了一种随机形式的ADD算法来解决该网络优化问题。理论上证明了随机ADD算法在不确定性的均方误差有界时,能以较高概率收敛于最优值的一个误差邻域;当给出更严格的不确定性的约束条件时,算法则可以较高概率收敛于最优值。实验结果表明,随机ADD算法的收敛速率比随机梯度下降算法快2个数量级。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133