|
重庆邮电大学学报(自然科学版) 2015
一种基于两步降维和并行特征融合的表情识别方法Keywords: 人脸表情识别,两步降维,并行特征融合,主成分分析法,酉空间混合判别分析法 Abstract: 在采用特征融合方法进行人脸表情识别时,通常会产生高维特征问题。针对这一问题,提出一种基于两步降维和并行特征融合的表情识别新方法。利用主成分分析法(principalcomponentanalysis,PCA)分别对待融合的两类特征在实数域进行第一次降维,将降维后的特征进行并行特征融合;为了解决在并行融合过程中产生的高维复特征问题,提出一种基于酉空间的混合判别分析方法(unitary-spacehybriddiscriminantanalysis,unitary-spaceHDA)作为酉空间的特征降维方法。该方法是实数域混合判别分析法在酉空间内的扩展,并兼顾了复特征数据的类间判别信息及全局描述信息。对局部二值模式(localbinarypattern,LBP)和Gabor小波特征进行融合,并在JAFFE和CK+表情数据集上开展对比实验。实验结果表明,该方法具有较好的高维复特征数据降维能力,并且有效提高了表情识别率。
|