全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于傅立叶核与径向基核的支持向量机性能之比较

Keywords: 支持向量机,函数回归,傅立叶核函数,径向基核函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

支持向量机(SVMs)是由Vapnik提出的一种建立在统计学习理论上的新方法。这种方法被深入地研究并广泛应用在诸如分类和回归问题上。由于其基于结构风险最小化的机理,因此相对于其他的经典方法有着更好的泛化特性,其中核函数的选择对支持向量机的性能有着很大的影响。深入地研究了基于傅立叶核函数的支持向量机的特性,得出在某些特殊的情况下,基于傅立叶核函数的支持向量机的性能要好于基于RBF核的支持向量机。最后的仿真对其进行了比较验证。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133