全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

蒽醌-2,6-二磺酸钠掺杂聚吡咯修饰阴极对沉积型微生物燃料电池产电性能的影响

Keywords: 沉积型微生物燃料电池(SMFC),阴极修饰,聚吡咯(PPy),蒽醌-2,6-二磺酸钠(AQDS)

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用化学原位聚合法制备了蒽醌-2,6-二磺酸钠(anthraquinone-2,6-disulfonicaciddisodiumsalt,AQDS)掺杂的聚吡咯(polypyrrole,PPy)修饰阴极.电化学交流阻抗谱(EIS)和塔菲尔(Tafel)测试发现,与空白阴极和PPy修饰阴极相比,PPy-AQDS修饰阴极的内阻更低,电极反应速率更高.在校园浅水湖中以空白阴极,PPy修饰阴极和PPy-AQDS修饰阴极运行沉积型微生物燃料电池(sedimentmicrobialfuelcell,SMFC)30d.实验结果表明,PPy-AQDS修饰阴极可以提高SMFC体系的产电能力并提高沉积物中有机质的去除效率.与空白阴极SMFC体系相比,PPy-AQDS修饰阴极SMFC体系的最大功率密度增大了3.7倍,阳极表面沉积物中烧失量(lossonignition,LOI)和易氧化有机质(readilyoxidizableorganicmatter,ROOM)去除率分别由5.5%和5.5%增大到14.4%和31.9%.

References

[1]  Xiaoling Yang, Jindan Lu, Yihua Zhu, et al. Microbial fuel cell cathode with dendrimer encapsulated Pt nanoparticles as catalyst[J].J Power Sources, 2011, 196: 10611-10615
[2]  Chen Y, Lv Z, Xu J, et al.Stainless steel mesh coated with MnO2/carbon nanotube and polymethylphenyl siloxane as low-cost and high-performance microbial fuel cell cathode materials[J].J Power Sources, 2012, 201: 136-141
[3]  潘丹云, 任月萍, 付飞, 等. MnO2-r-GO修饰阴极对沉积型微生物燃料电池(MFC)产电性能的影响[J].环境化学, 2013,32(4): 531-536
[4]  Birry L, Mehta P, Jaouen F, et al. Application of iron-based cathode catalysts in a microbial fuel cell[J].Electrochim Acta, 2011, 56: 1505-1511
[5]  Mirkhalaf F, Tammeveski K, Schiffrin D J. Substituent effects on the electrocatalytic reduction of oxygen on quinone-modified glassy carbon electrodes[J].Phys Chem Chem Phys, 2004, 6: 1321-1327
[6]  Sarapuu A, Helstein K, Vaik K, et al. Electrocatalysis of oxygen reduction by quinones adsorbed on highly oriented pyrolytic graphite electrodes[J].Electrochim Acta, 2010, 55: 6376-6382
[7]  Gautron E, Garron A, Bost E, et al. Synthesis, characterization and catalytic properties of polypyrrole-supported catalysts[J].Catal Commun, 2003, 4: 435-439
[8]  Feng C, Wan Q, Lv Z, et al. One-step fabrication of membraneless microbial fuel cell cathode by electropolymerization of polypyrrole onto stainless steel mesh[J].Biosens Bioelectron, 2011, 26: 3953-3957
[9]  梁 鹏,范明志,曹效鑫,等.微生物燃料电池表观内阻的构成和测量[J].环境科学, 2007,8:1894-1898
[10]  吴瑾妤,赵娟,李秀芬,等.基于pH值调控的沉积型微生物燃料电池(SMFC)运行特性[J].环境化学,2011,6:1162-1167
[11]  Hong S W, Kim H J, Choi Y S, et al. Field experiments on bioelectricity production from lake sediment using microbial fuel cell technology[J].Bull Korean Chem Soc, 2008, 29: 2189-2194
[12]  Zhao J, Li X F, Ren Y P, et al. Electricity generation from Taihu Lake cyanobacteria by sediment microbial fuel cells[J].J Chem Technol Biotechnol,2012, 87: 1567-1573
[13]  Yuan Y, Zhou S, Zhuang L. Polypyrrole/carbon black composite as a novel oxygen reduction catalyst for microbial fuel cells[J].J Power Sources, 2010, 195: 3490-3493
[14]  Loring D H, Rantala R T T. Manual for the geochemical analyses of marine sediments and suspended particulate matter[J].Earth-Sci Rev, 1992, 32, 235-283
[15]  Mohan S V, Srikanth S.Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: Synergistic effect of biocathode microenvironment[J].Bioresour Technol, 2011, 102: 10210-10220
[16]  Babu M L, Mohan S V. Influence of graphite flake addition to sediment on electrogenesis in a sediment-type fuel cell[J].Bioresour Technol, 2012, 110: 206-213

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133