Lovley D R, Coates J D, Blunt-Harris E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382, (6590): 445-448
[2]
Benz M, Schink B, Brune A. Humic acid reduction by propionibacterium freudenreichii and other fermenting bacteria[J]. Applied and Environmental Microbiology, 1998, 64(11): 4507-4512
[3]
Peretyazhko T, Sposito G. Reducing capacity of terrestrial humic acids[J]. Geoderma, 2006, 137(1-2) :140-146
[4]
Jiang J, Bauer I, Paul, A, et al. Arsenic redox changes by mcrobially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone[J]. Environmental Science & Technology, 2009, 43, 3639-3645
[5]
Cervantes F J, de Bok F A M, Tuan D D, et. al. Reduction of humic substances by halorespiring, sulphate-reducing and methanogenic microorganisms[J]. Environmental Microbiology, 2002, 4(1):51-57
[6]
Coates J D, Chakraborty R, O'Connor S M, et.al. The geochemical effects of microbial humic substances reduction[J]. Acta Hydrochimica Et Hydrobiologica, 2000, 28(7): 420-427
[7]
Jiang J, Kappler A. Kinetics of microbial and chemical reduction of humic substances: Implications for electron shuttling[J]. Environmental Science & Technology, 2008, 42(10): 3563-3569
Kappler A, Haderlein S B. Natural organic matter as reductant for chlorinated aliphatic pollutants[J]. Environmental Science & Technology, 2003, 37(12): 2714-2719
[10]
Kappler A, Benz M, Schink B, et al. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment[J]. Fems Microbiology Ecology, 2004, 47, (1): 85-92
[11]
Stevenson F J. Humus chemistry: Genesis, composition, reactions, 2nd ed [M]. New York: John Wiley & Sons, 1994: 443-456
[12]
Scott D T, McKnight D M, Blunt-Harris E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environmental Science & Technology, 1998, 32(19):2984-2989
[13]
Van der Zee F R, Cervantes F J. Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review[J]. Biotechnol Adv, 2009, 27(3):256-277
Senesi N. Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals.Part II.The fluorescence spectroscopy approach[J]. Anal Chin Acta, 1990, 232: 77-106
[16]
Pullin M J, Cabaniss S E. Rank analysis of the pH-dependent synchronization fluorescence spectra of six standard humic substances[J]. Environ Sci Technol, 1995, 29(6): 1460-1467
[17]
McKnight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38-48
Chen L, Senesi N, Sehnizer M. Information provided on humic substance by E4/E6 ratios[J]. Soil Sci Soc Amer Proe, 1977, 41, 352-358
[20]
文启孝. 土壤有机质的组成、形成和分解[J]. 土壤, 1984, (4): 121-129
[21]
Senesi N, D'Orazio V. Fluorescence Spectroscopy. in encyclopedia of soils in the environment[M]. Elsevier: Oxford, 2005: 35-52
[22]
Cory R M, McKnight D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science & Technology, 2005, 39(21):8142-8149