全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

以表面处理大肠杆菌为模型的电化学微生物传感器在毒性检测领域的应用

Keywords: 表面处理大肠杆菌,TritonX-100,媒介体,毒性,微生物传感器

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以铁氰化钾为探针,采用电化学方法监测铁氰化钾还原产物的量的变化,进而考察经不同时间、不同浓度的TritonX-100预处理表面的大肠杆菌(E.coli)活性及对毒物毒性灵敏度的变化.同时,结合扫描电镜(SEM)及生长曲线实验考察E.coli形貌及繁殖能力的变化,确定最优预处理条件.电化学分析结果表明,TritonX-100的使用量和作用时间分别为2%和1h时,E.coli因呼吸作用而产生的电信号值最高;随着TritonX-100作用时间的增加,E.coli细胞活性逐渐减弱,当处理时间达到4h,E.coli的细胞活性甚至低于未处理细胞.SEM结果表明,相对于未处理的细胞,经2%TritonX-100处理1h时的E.coli的细胞壁通透性增加.此外,E.coli生长曲线实验结果证明,经2%TritonX-100处理1h后,E.coli亲代细胞的繁殖活性有所下降,但子代的繁殖活性未受明显影响.根据条件优化的结果,经2%TritonX-100处理1h的E.coli被用于3,5-二氯苯酚(DCP)的毒性检测,作用1h后的半数抑制率(IC50)为6.60mg·L-1.而采用未经处理的E.coli与6.60mg·L-1的DCP作用1h后产生的抑制率仅为34.4%.同时,优化菌株及对照菌株分别被应用于7份实际水样的毒性检测,其抑制率范围分别为4.37%—5.90%及2.24%—3.69%.可见,经2%TritonX-100预处理1h的E.coli活性及对毒物毒性灵敏度均有所提高,更加适用于水质毒性检测.

References

[1]  Azizullah A,Khattak M N K,Richter P,et al. Water pollution in Pakistan and its impact on public health—A review[J]. Environment International,2011,37(2):479-497
[2]  Glibert P M. Harmful algal blooms in Asia:An insidious and escalating water pollution phenomenon with effects on ecological and human health[J]. ASIANetwork Exchange:A Journal for Asian Studies in the Liberal Arts,2014,21(1):52-68
[3]  赵艳民,秦延文,郑丙辉,等.突发性水污染事故应急健康风险评价[J].中国环境科学,2014,05:1328-1335
[4]  李伟.水污染对于人类健康的影响及对策探讨[J].农业与技术,2013,08:234
[5]  Namazi H,Heydari A,Pourfarzolla A. Synthesis of glycoconjugated polymer based on polystyrene and nanoporous β-cyclodextrin to remove copper (II) from water pollution[J]. International Journal of Polymeric Materials and Polymeric Biomaterials,2014,63(1):1-6
[6]  马军.水污染减排需关注重点污染源[J].世界环境,2011,02:22-23
[7]  Balinova A M. Acetochlor-A comparative study on parameters governing the potential for water pollution[J]. Journal of Environmental Science & Health Part B,1997,32(5):645-658
[8]  张建超.环境遗传毒性效应检测方法的建立及其应用[D].济南:山东师范大学硕士论文,2013
[9]  吴秋华.液相微萃取前处理结合高效液相色谱法在农药残留分析中的应用[D].保定:河北农业大学博士论文,2011
[10]  Bonansea R I,Amé M V,Wunderlin D A. Determination of priority pesticides in water samples combining SPE and SPME coupled to GC-MS. A case study:Suquía River basin (Argentina)[J]. Chemosphere,2013,90(6):1860-1869
[11]  张宏斌,胡斌.一起水污染事件的吹扫捕集-气相色谱-质谱的分析结果[J].职业与健康,2011,03:291-292
[12]  Silva E,Mendes M P,Ribeiro L,et al. Exposure assessment of pesticides in a shallow groundwater of the Tagus vulnerable zone (Portugal):a multivariate statistical approach (JCA)[J]. Environmental Science and Pollution Research,2012,19(7):2667-2680
[13]  Wang W,Li Y,Wu Q,et al. Extraction of neonicotinoid insecticides from environmental water samples with magnetic graphene nanoparticles as adsorbent followed by determination with HPLC[J]. Analytical Methods,2012,4(3):766-772
[14]  Yao J,Gao Q,Li X,et al. Investigating river pollution flowing into Dianchi Lake using a combination of GC-MS analysis and toxicological tests[J]. Bulletin of Environmental Contamination and Toxicology,2014,92(1):67-70
[15]  Eisert R,Levsen K. Solid-phase microextraction coupled to gas chromatography:A new method for the analysis of organics in water[J]. Journal of Chromatography A,1996,733(1):143-157
[16]  龙堃.水中芳环化合物及氨基甲酸酯农药的液相色谱分析[D].保定:河北大学硕士论文,2011
[17]  Zhang L,Dong L,Ren L,et al. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta,China[J]. Journal of Environmental Sciences,2012,24(2):335-342
[18]  Amine A,Mohammadi H,Bourais I,et al. Enzyme inhibition-based biosensors for food safety and environmental monitoring[J]. Biosensors and Bioelectronics,2006,21(8):1405-1423
[19]  Karube I,Nomura Y. Enzyme sensors for environmental analysis[J]. Journal of Molecular Catalysis B:Enzymatic,2000,10(1):177-181
[20]  Soldatkin O O,Kucherenko I S,Pyeshkova V M,et al. Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions[J]. Bioelectrochemistry,2012,83:25-30
[21]  唐楠.微生物传感器的研究现状及在水环境监测中的应用[J].四川环境,2011,01:40-44
[22]  金静.微生物传感器在环境监测中的应用进展[J].价值工程,2010,22:94-95
[23]  Shen Y J,Lefebvre O,Tan Z,et al. Microbial fuel-cell-based toxicity sensor for fast monitoring of acidic toxicity[J]. Water Science & Technology,2012,65(7):1223-1228
[24]  Kubisch R,Bohrn U,Fleischer M,et al. Cell-based sensor system using l6 cells for broad band continuous pollutant monitoring in aquatic environments[J]. Sensors,2012,12(3):3370-3393
[25]  Hnaien M,Bourigua S,Bessueille F,et al. Impedimetric microbial biosensor based on single wall carbon nanotube modified microelectrodes for trichloroethylene detection[J]. Electrochimica Acta,2011,56(28):10353-10358
[26]  Desmet C,Blum L J,Marquette C A. High-throughput multiplexed competitive immunoassay for pollutants sensing in water[J]. Analytical Chemistry,2012,84(23):10267-10276
[27]  Trnkova L,Fabrik I,Huska D,et al. Paramagnetic antibody-modified microparticles coupled with voltammetry as a tool for isolation and detection of metallothionen as a bioindicator of metal pollution[J]. Journal of Environmental Monitoring,2011,13(10):2763-2769
[28]  杜晓燕,陈文华,常东.电化学DNA传感器及其在环境和医学检验中的应用[J].传感技术学报,2002,04:347-352
[29]  Wang L,Hua E,Liang M,et al. Graphene sheets,polyaniline and AuNPs based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe[J]. Biosensors and Bioelectronics,2014,51:201-207
[30]  Zhang L,Li T,Li B,et al. Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury (II) ion[J]. Chem. Commun.,2010,46(9):1476-1478
[31]  Lin Z,Li X,Kraatz H B. Impedimetric immobilized DNA-based sensor for simultaneous detection of Pb2+,Ag+,and Hg2+[J]. Analytical Chemistry,2011,83(17):6896-6901
[32]  Yao W,Wang L,Wang H,et al. An electrochemiluminescent DNA sensor based on nano-gold enhancement and ferrocene quenching[J]. Biosensors and Bioelectronics,2013,40(1):356-361
[33]  刘畅.基于铁氰化钾的微生物传感技术的研究[D].沈阳:东北大学博士论文,2009
[34]  Zhao W,Ge P Y,Xu J J,et al. Selective detection of hypertoxic organophosphates pesticides via PDMS composite based acetylcholinesterase-inhibition biosensor[J]. Environmental Science & Technology,2009,43(17):6724-6729
[35]  Mulchandani A,Kaneva I,Chen W. Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 2. Fiber-optic microbial biosensor[J]. Analytical Chemistry,1998,70(23):5042-5046
[36]  邓庭进,叶锦韶,彭辉,等.微囊藻毒素-LR对恶臭假单胞菌细胞活性和表面特性的影响[J].环境科学,2015,36(1):252-258

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133