全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

CCl4强化超声降解诺氟沙星的效果和抗菌性分析

Keywords: 超声,CCl4,诺氟沙星,大肠杆菌,金黄色葡萄球菌,抑菌性

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究CCl4对超声降解诺氟沙星的强化效果和抗菌性的去除,考察了CCl4质量浓度、超声功率、溶液初始pH值、诺氟沙星初始浓度、NaCl等对降解效果的影响.并采用滤纸片法考察了诺氟沙星降解过程中抗菌性的变化.结果表明,CCl4增强了超声降解诺氟沙星的效果,降解过程符合一级反应动力学.在反应液体积为250mL,CCl4质量浓度在0.00—2.55g·L-1范围,诺氟沙星的去除率随CCl4质量浓度的增加而增加,超声40min,去除率由6.9%增加到67.37%.超声功率在130—325W范围,260W时的去除率达到最高;pH值对诺氟沙星的超声降解影响很大,pH值为6.60时一级反应速率常数k达到最大,为27.19×10-3min-1.CCl4质量浓度一定,诺氟沙星的去除率随其初始浓度的增加而降低.NaCl降低了诺氟沙星的降解效果,NaCl浓度在0—8.0mg·L-1,反应40min,诺氟沙星的去除率从67.37%降低为47.43%.大肠杆菌和金黄色葡萄球菌的抗菌结果表明,超声/CCl4能够完全去除诺氟沙星的抗菌性.反应30min,大肠杆菌的抑菌圈直径从30.0mm减小到14.0mm(滤纸直径为14.0mm).反应40min,金黄色葡萄球菌的抑菌圈直径从28.0mm减小到14.0mm.本研究表明超声/CCl4能有效用于含氟喹诺酮类抗生素的废水处理.

References

[1]  Calamari D, Zuccato E, Castiglioni S, et al. Strategic survey of therapeutic drugs in the rivers Po and Lambro in nothern Italy[J]. Environ Sci Technol, 2003, 37:1241-1248
[2]  Jacoby G A. Mechanisms of resistance to quinolones[J]. Clin infect dis, 2005, 41:S120-S126
[3]  翟文超, 罗义, 赵静, 等. 抗生素抗性基因在典型行业和市政污水中的污染特征及消减研究进展[J]. 环境化学, 2014, 33(2): 206-216
[4]  魏红,李娟,李克斌,等.左氧氟沙星的超声/H2O2超声联合降解研究[J]. 中国环境科学, 2013,33(2):257-262
[5]  魏红,李娟,李克斌,等.CCl4对左旋氧氟沙星超声降解的影响[J].高等学校化学学报, 2012, 33(7):1438-1443
[6]  Nasuhoglu D, Rodayan A, Berk D,et al. Removal of the antibiotic levofloxacin (LEVO) in water by ozonation and TiO2 photocatalysis[J]. Chem Eng J, 2012, 190: 41-48
[7]  Evelien D B, Colin J, Sanne D S, et al. Sonolysis of ciprofloxacin in aqueous solution: Influence of operational parameters[J]. Ultrason Sonochem, 2011, 18:184-189
[8]  Pétrier C, Francony A. Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation[J].Ultrason Sonochem, 1997, 4(4): 295-300
[9]  Teel A L, Watts R J J. Degradation of carbon tetrachloride by modified Fenton's reagent[J]. J Hazard Mater,, 2002, 94(2): 179-189
[10]  Zheng W, Maurin M, Tarr M.A. Enhancement of sonochemical degradation of phenol using hydrogen atom scavengers[J].Ultrason Sonochem, 2005, 12(4): 313-317
[11]  Ghodbane H, Hamdaoui O. Intensification of sonochemical decolorization of anthraquinonic dye Acid Blue 25 using carbon tetrachloride[J]. Ultrason Sonochem, 2009, 12: 455-461
[12]  Guo W L, Shi Y H, Wang H Z, et al. Intensification of sonochemical degradation of antibiotics levofloxacin using carbon tetrachloride[J]. Ultrason Sonochem, 2010, 17: 680-684
[13]  Hartmann J, Bartels P, Mau U, et al. Degradation of the drug diclofenac in water by sonolysis in presence of catalysts[J]. Chemosphere, 2008, 70:453-461
[14]  Kümmerer K. Antibiotics in the aquatic environment-A review-Part I[J]. Chemosphere, 2009, 75: 417-434
[15]  Mahamuni N N, Pandit A B. Effect of additives on ultrasonic degradation of phenol[J]. Ultrason Sonochem, 2006, 13: 165-174
[16]  Goel M, Hu H Q, Mujumda A S, et al. Sonochemical decomposition of volatile and non-volatile organic compounds—a comparative study[J]. Water Res, 2004, 38(19): 4247-4261
[17]  Xiao X, Zeng X, Lemley A. Species-dependent degradation of ciprofloxacin in a membrane anodic fenton system[J]. J Agric Food Chem, 2010, 58: 10169-10175
[18]  Li K B, Dong C X, Zhang Y H, et al. Ag-AgBr/CaWO4 composite microsphere as an efficient photocatalystfor degradation of Acid Red 18 under visible light irradiation: Affecting factors, kinetics and mechanism[J]. J Mol Catal A: Chemical, 2014, 394: 105-113
[19]  Wang L M, Zhu L H, Luo W, et al. Drastically enhanced ultrasonic decolorization of methyl orange by adding CCl4[J]. Ultrason Sonochem, 2007, 14: 253-258
[20]  Song Y L, Li J T. Degradation of C I. Direct Black 168 from aqueous solution by fly ash/H2O2 combining ultrasound[J].Ultrason Sonochem, 2009, 16:440-444
[21]  Siedlecka E M, Wieckowska A, Stepnowski P. Influence of inorganic ions on MTBE degradation by Fenton's reagent[J].J Hazard Mater, 2007, 147: 497-502
[22]  Shen L L, Mitscher L A, Sharma P N, et al. Mechanism of inhibition of DNA gyrase by quinolone antibacterials:A cooperative drug-DNA binding model[J]. Biochemistry, 1989, 28 (9): 3886-3894
[23]  Zhang H C, Huang C H. Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide[J]. Environ. Sci. Technol, 2005, 39: 4474-4483
[24]  Paul T, Dodd M C, Strathmann T J. Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: Transformation products and residual antibacterial activity[J]. Water Research, 2010, 44(10): 3121-3132
[25]  Baquero F, Martínez J L, Cantón R. Antibiotics and antibiotic resistance in water environments[J].Curr opin biotechnol, 2008, 19: 260-265

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133