全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

DOI:10.7524/j.issn.0254-6108.2014.05.024

Keywords: 氟喹诺酮类抗生素,光降解,抑菌活性,光化学转化风险,水环境

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用体外抑菌实验,以大肠杆菌(Escherichiacoli)为受试菌种,比较研究了模拟日光(λ>290nm)照射下,恩诺沙星、环丙沙星、二氟沙星、沙拉沙星等4种不同氟喹诺酮类抗生素(FQs)在纯水、淡水、海水中光降解过程抑菌活性的变化及作用机制.发现恩诺沙星和二氟沙星在光解初始阶段(0—t1/2),光解溶液的抑菌活性没有出现显著降低的趋势(P>0.05),这是因为其光转化分别生成了抑菌活性更大的产物环丙沙星和沙拉沙星,且这两种产物在0—t1/2不断积累.区别于前两种FQs,环丙沙星和沙拉沙星光降解过程中抑菌活性呈明显降低趋势(P<0.01),表明其产物的抑菌活性相对于母体化合物可以忽略.纯水、淡水和海水中同种FQ光解过程中表现出相似的抑菌活性变化规律.

References

[1]  Ge L K, Chen J W, Qiao X L, et al. Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics: Mechanism and kinetics[J]. Environmental Science & Technology, 2009, 43(9): 3101-3107
[2]  杨凯, 葛林科, 那广水, 等. 水中噁唑烷酮类抗生素利奈唑酮的光化学行为[J].科学通报, 2012, 57(26): 2469-2474
[3]  葛林科. 水中溶解性物质对氯霉素类和氟喹诺酮类抗生素光降解的影响[D].大连:大连理工大学博士学位论文, 2009: 71-104
[4]  Uskokovic V, Batarni S S, Schweicher J, et al. Effect of calcium phosphate particle shape and size on their antibacterial and osteogenic activity in the delivery of antibiotics in vitro[J]. American Chemical Society, 2013, 5(7): 2422-2431
[5]  Lu G H, Zhao Y H, Yang S G, et al. Quantitative structure-biodegradability relationships of substituted benzenes and their biodegradability in river water[J]. Bulletin of Environment Contamination and Toxicology, 2002, 69(1): 111-116
[6]  Jiao S J, Zheng S R, Yin D Q, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria[J]. Chemosphere, 2008, 73(3): 377-382
[7]  Han Y R, Wang Q J, Mo C H, et al. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao[J]. Environmental Pollution, 2010, 158(7): 2350-2358
[8]  Li W, Shi Y, Gao L, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China[J]. Chemosphere, 2012, 89: 1307-1315
[9]  Luo Y, Xu L Q, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2011, 45(5): 1827-1833
[10]  Na G S, Gu J, Ge L K, et al. Detection of 36 antibiotics in coastal waters using high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Oceanology and Limnology, 2011, 29(5): 1093-1102
[11]  Na G S, Fang X D, Cai Y Q, et al. Occurrence, distribution and bioaccumulation of antibiotics in coastal environment of Dalian, China[J]. Marine Pollution Bulletin, 2013, 69(1/2): 233-237
[12]  Wei X X, Chen J W, Xie Q, et al. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin[J]. Environmental Science and Technology, 2013, 47(9): 4284-4290
[13]  Niu J F, Zhang L, Li Y, et al. Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: Kinetics and mechanism[J]. Journal of Environmental Sciences, 2013, 25(6): 1098-1106
[14]  Sun P Z, Yao H, Minakata D, et al. Acid-catalyzed transformation of ionophore veterinary antibiotics: Reaction mechanism and product implications[J]. Environmental Science and Technology, 2013, 47(13): 6781-6789
[15]  葛林科, 张思玉, 谢晴, 等. 抗生素在水环境中的光化学行为[J].中国科学: 化学, 2010, 40(2): 124-135
[16]  Niu J F, Li Y, Wang W L. Light-source-dependent role of nitrate and humic acid in tetracycline photolysis: Kinetics and mechanism[J]. Chemosphere, 2013, 92(11): 1423-1429
[17]  Zhang J W, Fu D F, Wu J L. Photodegradation of Norfloxacin in aqueous solution containing algae[J]. Journal of Environmental Sciences, 2012, 24(4): 743-749
[18]  Li Y, Niu J F, Wang W L. Photolysis of enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products[J]. Chemosphere, 2011, 85(5): 892-897
[19]  Kusari S, Prabhakaran D, Lamsh?ft M, et al. In vitro residual anti-bacterial activity of difloxacin, sarafloxacin and their photoproducts after photolysis in water[J]. Environmental Pollution, 2009, 157(10): 2722-2730
[20]  Ge L K, Chen J W, Zhang S Y, et al. Photodegradation of fluoroquinolone antibiotic gatifloxacin in aqueous solutions[J]. Chinese Science Bulletin, 2010, 55(15): 1495-1500
[21]  Wang X H, Lin A Y C. Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity[J]. Environmental Science and Technology, 2012, 46(22): 12417-12426
[22]  张浩, 罗义, 周启星. 四环素类抗生素生态毒性研究进展[J]. 农业环境科学学报, 2008, 27(2): 407-413
[23]  Kristine H W, Timothy M L, Kristopher M, et al. Changes in antibacterial activity of triclosan and sulfa drugs due to photochemical transformations[J]. Environmental Toxicology and Chemistry, 2009, 25(6): 1480-1486
[24]  Ge L K, Chen J W, Wei X X, et al. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents[J]. Environmental Science and Technology, 2010, 44(7): 2400-2405
[25]  Babic S, Perisa M,Skoric I. Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media[J]. Chemosphere, 2013, 91(11): 1635-1642
[26]  Paul T, Dodd M C, Strathmann T J. Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: Transformation products and residual antibacterial activity[J]. Water Research, 2010, 44(10): 3121-3132
[27]  Sturini M, Speltini A, Maraschi F, et al. Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts[J]. Water Research, 2012, 46(17): 5575-5582
[28]  Wammer K H, Kkorte A R, Lundeen R A, et al. Direct photochemistry of three fluoroquinolone antibacterials:Norfloxacin, ofloxacin, and enrofloxacin[J]. Water Research, 2012, 47(1): 439-448

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133