全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

DOI:10.7524/j.issn.0254-6108.2014.04.018

Keywords: 生物炭,微囊藻毒素,吸附性能,雷竹,废物利用

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探索农业废弃物再生吸附材料对微囊藻毒素的吸附机制问题,采用典型农业废弃物雷竹落叶制备生物炭,研究适宜的制备工艺,探讨吸附条件和有机介质对微囊藻毒素-LR(MCLR)的吸附特性影响及其机制.结果表明,雷竹落叶竹叶生物炭的芳香性随着炭化温度和升温速率的升高而增加,极性指数则减小,同时比表面积也迅速增大,从0.25m2·g-1到87.09m2·g-1;竹叶生物炭对水体中MCLR具有较强的吸附能力,吸附量随炭化温度和升温速率的升高而增加,从72.27μg·g-1到624.47μg·g-1;吸附行为符合非线性Freundlich模型,且N指数和lnKF与芳香性和极性大小呈良好的线性关系;吸附效果受pH、反应温度和自然界溶解性有机质(DOMs)的影响,在pH值为3时有最大吸附量,当反应温度升高时吸附量减小,DOMs对MCLR的吸附有明显的竞争作用.适宜的制备工艺生成的雷竹落叶生物炭能有效地去除水体中MCLR.

References

[1]  Qu J H, Fan M H. The current state of water quality and technology development for water pollution control in China[J]. Critl Rev Env Sci Tec, 2010, 40(6): 519-560
[2]  Himberg K, Keijola A M, Pyysalo H, et al. The effect of water treatment processes on the removal of hepatotoxins from microcystis and oscillatoria cyanobacteria: A laboratory study[J]. Water Res, 1989, 23 (8): 979-984
[3]  Lawton L A, Robertson P K J. Physicochemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters[J]. Chem Soc Rev, 1999, 28:217-224
[4]  Shawwa A R, Smith D W. Kinetics of microcystin-LR oxidation by ozone[J]. Ozone Sci Eng, 2001, 23 (2):161-170
[5]  Ho L, Onstad G, Gunten U V, et al. Differences in the chlorine reactivity of four microcystin analogues[J]. Water Res, 2006, 40(6): 1200-1209
[6]  Pyo D J, Yoo J S. Degradation of cyanobacterial toxin, microcystin LR, using chemical oxidants[J]. J Immunoass Immunoch, 2008, 29(3): 211-219
[7]  Merel S, LeBot B, Clément M, et al. Ms identication of microcystin-LR chlorination by-products[J]. Chemosphere, 2009, 74(6): 832-839
[8]  Kull T P J, Sjǒvall O T, Tammenkoski M K, et al. Oxidation of the Cyanobacterial hepatotoxin microcystin-LR by chlorine dioxide: Influence of natural organic matter[J]. Environ Sci Technol, 2006, 40(5): 1504-1510
[9]  Liang W Y, Qu J H, Wang K, et al. Electrochemical degradation of cyanobacterial toxin microcystin-LR using Ti/RuO2 electrodes in a continuous tubular reactor[J]. Environ Eng Sci, 2008, 25(5):635-541
[10]  Feng C P, Sugiura N, Masaoka Y, et al. Electrochemical degradation of microcystin-LR[J]. J Environl Sci Heal A, 2005, 40(2):453-465
[11]  Thirumavalavan M, Hu Y L, Lee J F. Effects of humic acid and suspended soils on adsorption and photo-degradation of microcystin-LR onto samples from Taiwan reservoirs and rivers[J]. J Hazard Mater, 2012, 217-218: 323-329
[12]  Song W H, Cruz A A D L, Rein K, et al. Ultrasonically induced degradation of microcystin-LR and -RR: Identification of products, effect of pH,formation and destruction of peroxides[J]. Environ Sci Technol, 2006, 40: 3941-3946
[13]  Bourne D G, Blakeley R L, Riddles P, et al. Biodegradation of the cyanobacterial toxin microcystin LR in natural water and biologically active slow sand lters[J]. Water Res, 2006, 40(6): 1294-1302
[14]  Eleuterio L, Batista J R. Biodegradation studies and sequencing of microcystin-LR degrading bacteria isolated from a drinking water biolter and a fresh water lake[J]. Toxicon, 2010, 55(8): 1434-1442
[15]  王萌萌, 周启星. 生物炭的土壤环境效应及其机制研究[J]. 环境化学, 2013, 32(5): 768-780
[16]  王宁, 侯艳伟, 彭静静,等. 生物炭吸附有机污染物的研究进展[J]. 环境化学, 2012, 31(3): 287-295
[17]  李力, 刘娅, 陆宇超,等. 生物炭环境效应及应用的研究进展 [J]. 环境化学, 2011, 30(8): 1411-1421
[18]  Chen B L, Johnson E J, Chefetz B, et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: Role of polarity and accessibility [J]. Environ Sci Technol, 2005, 39(16):6138-6146
[19]  Gunasekara A S, Simpson M J, Xing B S. Identification and characterization of sorption domains in soil organic matter using structurally modified humic acids[J]. Environ Sci Technol, 2003, 37(5):852-858
[20]  Tasi W T, Kuo K C, Tasi C Y, et al. Novel preparation of bamboo biochar and its application on cationic dye removal[J]. Environ Sci Technol, 2011, 5(4): 556-561
[21]  Roe R J. Adsorption of solid solutes from solution: Application of the multilayer theory of adsorption[J]. J Colloid Interf Sci, 1975, 50(1): 64-69
[22]  Harada K I, Tsuji K, Watanabe M F. Stability of microcystins from cyanobacteria-Ⅲ. Effect of pH and temperature[J]. Phycologia, 1996, 35(6): 83-88
[23]  Wu X Q, Xiao B D, Li R H, et al. Mechanisms and factors affecting sorption of microcystins onto natural sediments[J]. Environ Sci Technol, 2011, 45(7):2641-2647
[24]  Demirbas E, Kobya M, Sulak M T. Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon[J]. Bioresource Technol, 2008, 99(13): 5368-5373
[25]  Pendleton P, Schumann R, Wong S H. Microcystin-LR adsorption by activated carbon[J]. J Colloid Interf Sci, 2001, 240(1): 1-8
[26]  De Maagd P G J, Hendriks A J, Seinen W, et al. pH-dependent hydrophobicity of the cyanobacteria toxin microcystin-LR[J]. Water Res, 1999, 33(3): 677-680
[27]  Cook D, Newcombe G. Comparison and modeling of the adsorption of two microcystin analogues onto powdered activated carbon[J]. Environ Technol, 2008, 29(5): 525-534
[28]  Wang M, Huang Z H, Liu G J, et al. Adsorption of dimethyl sulde from aqueous solution by a cost-effective bamboo charcoal [J]. J Hazard Mater, 2011, 190(1/3):1009-1015
[29]  Zhang H J, Zhu G Y, Jia X Y et al. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modied with chitosan[J]. J Environ Sci, 2011, 23(12): 1983-1988

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133