全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

DOI:10.7524/j.issn.0254-6108.2014.04.009

Keywords: 纳米零价铁,氧化,性质演变,环境介质

Full-Text   Cite this paper   Add to My Lib

Abstract:

纳米零价铁(nZVI)尺寸小、比表面积大、表面能高、还原性强,对环境污染物具有良好的去除效果,常用于土壤及水体修复领域.而nZVI的上述特性使其在含氧环境介质中易发生氧化现象,导致物理化学性质发生变化并影响污染物的去除.本文综述了nZVI在不同环境介质中氧化后物理化学性质演变研究进展,包括nZVI制备方法及特性综述、nZVI氧化导致的结构组成和性质的演变、氧化后对重金属去除机理探讨和对环境的毒性变化,并对nZVI氧化研究与其环境领域中的应用关系进行了展望,期待为深入研究提供理论借鉴.

References

[1]  Sohn K, Kang S W, Ahn S, et al. Fe (0) nanoparticles for nitrate reduction: stability, reactivity, and transformation [J]. Environmental Science & Technology, 2006, 40(17): 5514-5519
[2]  Sarathy V, Tratnyek P G, Nurmi J T, et al. Aging of iron nanoparticles in aqueous solution: effects on structure and reactivity [J]. The Journal of Physical Chemistry C, 2008, 112(7): 2286-2293
[3]  Liu Y, Lowry G V. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination [J]. Environmental Science & Technology, 2006, 40(19): 6085-6090
[4]  Liu Y, Majetich S A, Tilton R D, et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties [J]. Environmental Science & Technology, 2005, 39(5): 1338-1345
[5]  程荣, 王建龙, 张伟贤. 纳米金属铁降解有机卤化物的研究进展 [J]. 化学进展, 2006, 18(1): 93-99.
[6]  Ramos M A V, Yan W, Li X, et al. Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure [J]. The Journal of Physical Chemistry C, 2009, 113(33): 14591-14594
[7]  Li X, Zhang W. Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS) [J]. The Journal of Physical Chemistry C, 2007, 111(19): 6939-6946
[8]  Kanel S R, Manning B, Charlet L. Removal of arsenic (Ⅲ) from groundwater by nanoscale zero-valent iron [J]. Environmental Science & Technology, 2005, 39(5): 1291-1298
[9]  Kim H S, Kim T, Ahn J Y, et al. Aging characteristics and reactivity of two types of nanoscale zero-valent iron particles (FeBH and FeH2) in nitrate reduction [J]. Chem Eng J, 2012, 197: 16-23
[10]  Kuang W, Han E H, Wu X, et al. Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water [J]. Corrosion Science, 2010, 52(11): 3654-3660
[11]  Shin E J, Miser D E, Chan W G, et al. Catalytic cracking of catechols and hydroquinones in the presence of nano-particle iron oxide [J]. Applied Catalysis B: Environmental, 2005, 61(1/2): 79-89
[12]  Dumitrache F, Morjan I, Alexandrescu R, et al. Iron-iron oxide core-shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation [J]. Appl Surf Sci, 2005, 247(1/4): 25-31
[13]  Sarathy V, Salter A J, Nurmi J T, et al. Degradation of 1, 2, 3-trichloropropane (TCP): Hydrolysis, elimination, and reduction by iron and zinc [J]. Environmental Science & Technology, 2009, 44(2): 787-793
[14]  Kim H S, Ahn J Y, Hwang K Y, et al. Atmospherically stable nanoscale zero-valent iron particles formed under controlled air contact: Characteristics and reactivity [J]. Environmental Science & Technology, 2010, 44(5): 1760-1766
[15]  Liu Y, Phenrat T, Lowry G V. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution [J]. Environmental Science & Technology, 2007, 41(22): 7881-7887
[16]  Bang S, Johnson M D, Korfiatis G P, et al. Chemical reactions between arsenic and zero-valent iron in water [J]. Water Research, 2005, 39(5): 763-770
[17]  Wang Q, Lee S, Choi H. Aging study on the structure of Fe0-nanoparticles: Stabilization, characterization, and reactivity [J]. The Journal of Physical Chemistry C, 2010, 114(5): 2027-2033
[18]  Phillips D H, Watson D B, Roh Y. Mineralogical characteristics and transformations during long-term operation of a zerovalent iron reactive barrier [J]. Journal of Environmental Quality, 2003, 32(6): 2033-2045
[19]  Reinsch B C, Forsberg B, Penn R L, et al. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents [J]. Environmental Science & Technology, 2010, 44(9): 3455-3461
[20]  Xie Y, Cwiertny D M. Influence of anionic co-solutes and pH on nanoscale zero-valent iron longevity: Timescales and mechanisms of reactivity loss toward 1, 1, 1, 2-tetrachloroethane and Cr (VI) [J]. Environmental Science & Technology, 2012, 8365-8373
[21]  Cantrell K J, Kaplan D I, Wietsma T. W. Zero-valent iron for the in situ remediation of selected metals in groundwater [J]. Journal of Hazardous Materials, 1995, 42(2): 201-212
[22]  Pratt A R, Blowes D W, Ptacek C J. Products of chromate reduction on proposed subsurface remediation material [J]. Environmental Science & Technology, 1997, 31(9): 2492-2498
[23]  Jacobs J, Testa S M. Overview of chromium (VI) in the environment: Background and history//Chromium (VI) Handbook[M]. Boca Raton, Fla, CRC Press, 2005: 1-21
[24]  Yan W, Ramos M A, Koel B E, et al. Multi-tiered distributions of arsenic in iron nanoparticles: Observation of dual redox functionality enabled by a core-shell structure [J]. Chemical Communications, 2010, 46(37): 6995-6997
[25]  王菁姣, 陈家玮. 不同种类纳米零价铁的毒性研究比较 [J]. 现代地质, 2012, 26(5): 926-931
[26]  Chen P J, Su C H, Tseng C Y, et al. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish [J]. Marine Pollution Bulletin, 2011, 63(5/12): 339-46
[27]  Phenrat T, Long T C, Lowry G V, et al. Partial oxidation ("aging") and surface modification decrease the toxicity of nanosized zerovalent iron [J]. Environmental Science & Technology, 2008, 43(1): 195-200
[28]  Lee C, Kim J Y, Lee W I, et al. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli [J]. Environmental Science & Technology, 2008, 42(13): 4927-4933
[29]  Wang C, Baer D R, Amonette J E, et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles [J]. Journal of the American Chemical Society, 2009, 131(25): 8824-8832
[30]  Auffan M, Achouak W, Rose J, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli [J]. Environmental Science & Technology, 2008, 42(17): 6730-6735
[31]  Wiesner M R, Lowry G V, Alvarez P, et al. Assessing the risks of manufactured nanomaterials [J]. Environmental Science & Technology, 2006, 40(14): 4336-4345
[32]  Xu J, Dozier A, Bhattacharyya D. Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds [J]. Journal of Nanoparticle Research, 2005, 7 (4):449-467
[33]  Glavee G N, Klabunde K J, Sorensen C M, et al. Chemistry of borohydride reduction of iron (Ⅱ) and iron (Ⅲ) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders [J]. Inorganic Chemistry, 1995, 34(1): 28-35
[34]  Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs [J]. Environmental science & technology, 1997, 31(7): 2154-2156
[35]  Li X, Elliott D W, Zhang W X. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects [J]. Criti Rev Solid State, 2006, 31(4): 111-12
[36]  Li X, Zhang W X. Iron nanoparticles: the core-shell structure and unique properties for Ni (Ⅱ) sequestration [J]. Langmuir, 2006, 22(10): 4638-464
[37]  Lien H L, Zhang W. Transformation of chlorinated methanes by nanoscale iron particles [J]. Journal of Environmental Engineering, 1999, 125(11): 1042-1047
[38]  Matheson L J, Tratnyek P G. Reductive dehalogenation of chlorinated methanes by iron metal [J]. Environmental Science & Technology, 1994, 28(12): 2045-2053
[39]  Alowitz M J, Scherer M M. Kinetics of nitrate, nitrite, and Cr (VI) reduction by iron metal [J]. Environmental Science & Technology, 2002, 36(3): 299-306
[40]  Johnson T L, Scherer M M, Tratnyek P G. Kinetics of halogenated organic compound degradation by iron metal [J]. Environmental Science & Technology, 1996, 30(8): 2634-2640
[41]  Cao J, Wei L, Huang Q, et al. Reducing degradation of azo dye by zero-valent iron in aqueous solution [J]. Chemosphere, 1999, 38(3): 565-571
[42]  Hundal L, Singh J, Bier E, et al. Removal of TNT and RDX from water and soil using iron metal [J]. Environmental Pollution, 1997, 97(1): 55-64
[43]  高树梅,王晓栋,秦良,等. 改进液相还原法制备纳米零价铁颗粒 [J]. 南京大学学报(自然科学), 2007, 43(4): 359-364.
[44]  欧阳鸿武,孟小杰,黄誓成,等. 纳米铁及氧化铁粉制备技术的进展 [J]. 粉末冶金材料科学与工程, 2008, 13(6): 316-322.
[45]  Cabot A, Puntes V F, Shevchenko E. Vacancy coalescence during oxidation of iron nanoparticles [J]. Journal of the American Chemical Society, 2007, 129(34): 10358-10360
[46]  Zhang W. Nanoscale iron particles for environmental remediation: An overview [J]. Journal of Nanoparticle Research, 2003, 5(3): 323-332
[47]  Blowes D W, Ptacek C J, Jambor J L. In-situ remediation of Cr (VI)-contaminated groundwater using permeable reactive walls: Laboratory studies [J]. Environmental Science & Technology, 1997, 31(12): 3348-3357
[48]  Huber D L. Synthesis, properties, and applications of iron nanoparticles [J]. Small, 2005, 1(5): 482-501
[49]  Kanel S R, Greneche J M, Choi H. Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material [J]. Environmental Science & Technology, 2006, 40(6): 2045-2050
[50]  Zhang W X, Wang C B, Lien H L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles [J]. Catalysis Today, 1998, 40: 387-395
[51]  Xu Y, Zhang W. Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes [J]. Industrial & Engineering Chemistry Research, 2000, 39(7): 2238-2244
[52]  Yan W, Herzing A A, Li X, et al. Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity [J]. Environmental Science & Technology, 2010, 44(11): 4288-4294
[53]  Zhu B W, Lim T T. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: Reactive sites, catalyst stability, particle aging, and regeneration [J]. Environmental Science & Technology, 2007, 41(21): 7523-7529
[54]  Shokes T E, Mller G. Removal of dissolved heavy metals from acid rock drainage using iron metal [J]. Environmental Science & Technology, 1999, 33(2): 282-287
[55]  Dickinson M, Scott T B. The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent [J]. Journal of Hazardous Materials, 2010, 178(1): 171-179
[56]  Olegario J T, Yee N, Miller M, et al. Reduction of Se(VI) to Se(-Ⅱ) by zerovalent iron nanoparticle suspensions [J]. Journal of Nanoparticle Research, 2009, 12(6): 2057-2068
[57]  Crane R A, Dickinson M, Popescu I C, et al. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water [J]. Water Research, 2011, 45(9): 2931-2942

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133