Sohn K, Kang S W, Ahn S, et al. Fe (0) nanoparticles for nitrate reduction: stability, reactivity, and transformation [J]. Environmental Science & Technology, 2006, 40(17): 5514-5519
[2]
Sarathy V, Tratnyek P G, Nurmi J T, et al. Aging of iron nanoparticles in aqueous solution: effects on structure and reactivity [J]. The Journal of Physical Chemistry C, 2008, 112(7): 2286-2293
[3]
Liu Y, Lowry G V. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination [J]. Environmental Science & Technology, 2006, 40(19): 6085-6090
[4]
Liu Y, Majetich S A, Tilton R D, et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties [J]. Environmental Science & Technology, 2005, 39(5): 1338-1345
Ramos M A V, Yan W, Li X, et al. Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure [J]. The Journal of Physical Chemistry C, 2009, 113(33): 14591-14594
[7]
Li X, Zhang W. Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS) [J]. The Journal of Physical Chemistry C, 2007, 111(19): 6939-6946
[8]
Kanel S R, Manning B, Charlet L. Removal of arsenic (Ⅲ) from groundwater by nanoscale zero-valent iron [J]. Environmental Science & Technology, 2005, 39(5): 1291-1298
[9]
Kim H S, Kim T, Ahn J Y, et al. Aging characteristics and reactivity of two types of nanoscale zero-valent iron particles (FeBH and FeH2) in nitrate reduction [J]. Chem Eng J, 2012, 197: 16-23
[10]
Kuang W, Han E H, Wu X, et al. Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water [J]. Corrosion Science, 2010, 52(11): 3654-3660
[11]
Shin E J, Miser D E, Chan W G, et al. Catalytic cracking of catechols and hydroquinones in the presence of nano-particle iron oxide [J]. Applied Catalysis B: Environmental, 2005, 61(1/2): 79-89
[12]
Dumitrache F, Morjan I, Alexandrescu R, et al. Iron-iron oxide core-shell nanoparticles synthesized by laser pyrolysis followed by superficial oxidation [J]. Appl Surf Sci, 2005, 247(1/4): 25-31
[13]
Sarathy V, Salter A J, Nurmi J T, et al. Degradation of 1, 2, 3-trichloropropane (TCP): Hydrolysis, elimination, and reduction by iron and zinc [J]. Environmental Science & Technology, 2009, 44(2): 787-793
[14]
Kim H S, Ahn J Y, Hwang K Y, et al. Atmospherically stable nanoscale zero-valent iron particles formed under controlled air contact: Characteristics and reactivity [J]. Environmental Science & Technology, 2010, 44(5): 1760-1766
[15]
Liu Y, Phenrat T, Lowry G V. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution [J]. Environmental Science & Technology, 2007, 41(22): 7881-7887
[16]
Bang S, Johnson M D, Korfiatis G P, et al. Chemical reactions between arsenic and zero-valent iron in water [J]. Water Research, 2005, 39(5): 763-770
[17]
Wang Q, Lee S, Choi H. Aging study on the structure of Fe0-nanoparticles: Stabilization, characterization, and reactivity [J]. The Journal of Physical Chemistry C, 2010, 114(5): 2027-2033
[18]
Phillips D H, Watson D B, Roh Y. Mineralogical characteristics and transformations during long-term operation of a zerovalent iron reactive barrier [J]. Journal of Environmental Quality, 2003, 32(6): 2033-2045
[19]
Reinsch B C, Forsberg B, Penn R L, et al. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents [J]. Environmental Science & Technology, 2010, 44(9): 3455-3461
[20]
Xie Y, Cwiertny D M. Influence of anionic co-solutes and pH on nanoscale zero-valent iron longevity: Timescales and mechanisms of reactivity loss toward 1, 1, 1, 2-tetrachloroethane and Cr (VI) [J]. Environmental Science & Technology, 2012, 8365-8373
[21]
Cantrell K J, Kaplan D I, Wietsma T. W. Zero-valent iron for the in situ remediation of selected metals in groundwater [J]. Journal of Hazardous Materials, 1995, 42(2): 201-212
[22]
Pratt A R, Blowes D W, Ptacek C J. Products of chromate reduction on proposed subsurface remediation material [J]. Environmental Science & Technology, 1997, 31(9): 2492-2498
[23]
Jacobs J, Testa S M. Overview of chromium (VI) in the environment: Background and history//Chromium (VI) Handbook[M]. Boca Raton, Fla, CRC Press, 2005: 1-21
[24]
Yan W, Ramos M A, Koel B E, et al. Multi-tiered distributions of arsenic in iron nanoparticles: Observation of dual redox functionality enabled by a core-shell structure [J]. Chemical Communications, 2010, 46(37): 6995-6997
Chen P J, Su C H, Tseng C Y, et al. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish [J]. Marine Pollution Bulletin, 2011, 63(5/12): 339-46
[27]
Phenrat T, Long T C, Lowry G V, et al. Partial oxidation ("aging") and surface modification decrease the toxicity of nanosized zerovalent iron [J]. Environmental Science & Technology, 2008, 43(1): 195-200
[28]
Lee C, Kim J Y, Lee W I, et al. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli [J]. Environmental Science & Technology, 2008, 42(13): 4927-4933
[29]
Wang C, Baer D R, Amonette J E, et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles [J]. Journal of the American Chemical Society, 2009, 131(25): 8824-8832
[30]
Auffan M, Achouak W, Rose J, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli [J]. Environmental Science & Technology, 2008, 42(17): 6730-6735
[31]
Wiesner M R, Lowry G V, Alvarez P, et al. Assessing the risks of manufactured nanomaterials [J]. Environmental Science & Technology, 2006, 40(14): 4336-4345
[32]
Xu J, Dozier A, Bhattacharyya D. Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds [J]. Journal of Nanoparticle Research, 2005, 7 (4):449-467
[33]
Glavee G N, Klabunde K J, Sorensen C M, et al. Chemistry of borohydride reduction of iron (Ⅱ) and iron (Ⅲ) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders [J]. Inorganic Chemistry, 1995, 34(1): 28-35
[34]
Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs [J]. Environmental science & technology, 1997, 31(7): 2154-2156
[35]
Li X, Elliott D W, Zhang W X. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects [J]. Criti Rev Solid State, 2006, 31(4): 111-12
[36]
Li X, Zhang W X. Iron nanoparticles: the core-shell structure and unique properties for Ni (Ⅱ) sequestration [J]. Langmuir, 2006, 22(10): 4638-464
[37]
Lien H L, Zhang W. Transformation of chlorinated methanes by nanoscale iron particles [J]. Journal of Environmental Engineering, 1999, 125(11): 1042-1047
[38]
Matheson L J, Tratnyek P G. Reductive dehalogenation of chlorinated methanes by iron metal [J]. Environmental Science & Technology, 1994, 28(12): 2045-2053
[39]
Alowitz M J, Scherer M M. Kinetics of nitrate, nitrite, and Cr (VI) reduction by iron metal [J]. Environmental Science & Technology, 2002, 36(3): 299-306
[40]
Johnson T L, Scherer M M, Tratnyek P G. Kinetics of halogenated organic compound degradation by iron metal [J]. Environmental Science & Technology, 1996, 30(8): 2634-2640
[41]
Cao J, Wei L, Huang Q, et al. Reducing degradation of azo dye by zero-valent iron in aqueous solution [J]. Chemosphere, 1999, 38(3): 565-571
[42]
Hundal L, Singh J, Bier E, et al. Removal of TNT and RDX from water and soil using iron metal [J]. Environmental Pollution, 1997, 97(1): 55-64
Cabot A, Puntes V F, Shevchenko E. Vacancy coalescence during oxidation of iron nanoparticles [J]. Journal of the American Chemical Society, 2007, 129(34): 10358-10360
[46]
Zhang W. Nanoscale iron particles for environmental remediation: An overview [J]. Journal of Nanoparticle Research, 2003, 5(3): 323-332
[47]
Blowes D W, Ptacek C J, Jambor J L. In-situ remediation of Cr (VI)-contaminated groundwater using permeable reactive walls: Laboratory studies [J]. Environmental Science & Technology, 1997, 31(12): 3348-3357
[48]
Huber D L. Synthesis, properties, and applications of iron nanoparticles [J]. Small, 2005, 1(5): 482-501
[49]
Kanel S R, Greneche J M, Choi H. Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material [J]. Environmental Science & Technology, 2006, 40(6): 2045-2050
[50]
Zhang W X, Wang C B, Lien H L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles [J]. Catalysis Today, 1998, 40: 387-395
[51]
Xu Y, Zhang W. Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes [J]. Industrial & Engineering Chemistry Research, 2000, 39(7): 2238-2244
[52]
Yan W, Herzing A A, Li X, et al. Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity [J]. Environmental Science & Technology, 2010, 44(11): 4288-4294
[53]
Zhu B W, Lim T T. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: Reactive sites, catalyst stability, particle aging, and regeneration [J]. Environmental Science & Technology, 2007, 41(21): 7523-7529
[54]
Shokes T E, Mller G. Removal of dissolved heavy metals from acid rock drainage using iron metal [J]. Environmental Science & Technology, 1999, 33(2): 282-287
[55]
Dickinson M, Scott T B. The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent [J]. Journal of Hazardous Materials, 2010, 178(1): 171-179
[56]
Olegario J T, Yee N, Miller M, et al. Reduction of Se(VI) to Se(-Ⅱ) by zerovalent iron nanoparticle suspensions [J]. Journal of Nanoparticle Research, 2009, 12(6): 2057-2068
[57]
Crane R A, Dickinson M, Popescu I C, et al. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water [J]. Water Research, 2011, 45(9): 2931-2942