Pushan S, Vladimir S, Kathryn P, et al. Speciation of As, Cr, Se and Hg under coal fired power station conditions[J]. Fuel, 2008, 87(10/11): 1859-1869
[2]
Presto A A, Granite E J. Survey of catalysts for oxidation of mercury in flue gas[J].Environmental Science & Technology, 2006, 40(18): 5601-5609
[3]
Vidic R D, Chang M T, Thurnau R C. Kinetics of vapor-phase mercury uptake by virgin and sulfur-impregnated activated carbons[J]. Journal of Air Waste Managment Association, 1998, 48(3): 247-255
[4]
Galbreath K C, Zygarlicke C J. Mercury transformations in coal combustion flue gas[J]. Fule Processing Technology, 2000, 65-66(1): 289-310
[5]
Niksa S, Helble J J, Fujiwara N. Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems[J]. Environment Science & Technology, 2001, 35(18): 3701-3706
Laudal D L, Thomas D B, Nott B R. Critical review of mercury chemistry in flue gas[J]. Fule Processing Technology, 2000, 65-66(1): 157-165
[8]
Miller S J, Dunham G E, Olson E S, et al. X-ray photoelectron spectroscopy analysis of mercury sorbent surface chemistry[J]. Fule Processing Technology, 2000,65-66(1): 343-363
[9]
Ghorishi B, Gullet B K. Sorption of mercury species by activated carbons and calcium-based sorbents: effect of temperature, mercury concentration and acid gases[J]. Waste Management & Research, 1998, 16 (6): 582-593
[10]
Dunham G E, Olson E S, Miller S J. Impact of flue gas constituents on carbon sorbents. Proceedings of the Air Quality Ⅱ: Mercury, Trace Elements, and Particulate Matter Conference, Mclean, VA, Sept. 19-21, 2000, Paper A4-3
[11]
Carey T R, Hargrove O W, Richardson C F. Factors affecting mercury control in utility flue gas using activated carbon[J]. Journal of Air Waste Managment Association, 1998, 48(12): 1166-1174
[12]
Morimoto T, Wu S J, Uddin M A, et al. Characteristics of the mercury vapor removal from coal combustion flue gas by activated carbon using H2S[J]. Fuel, 2005, 84(14/15): 1968-1974
[13]
Feeley T J, Brickett L A, O'Palko A. Field testing of mercury control technologies for coal-fired power plants. DOE/NETL Mercury R&D Program Review, U.S. DOE, May 12-14, 2005
[14]
Hsi H, Chen S, Abadi M R. Preparation and evaluation of coal-derived activated carbons for removal of mercury vapor from simulated coal combustion flue gases[J]. Energy Fuels, 1998, 12(6): 1061-1070
[15]
Hsi H, Rood M J, Abadi M R. Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs)[J]. Environmental Science & Technology, 2001, 25(13): 2785-2791
[16]
Ghorishi S B, Keeney R M, Serre S D. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury[J]. Environmental Science & Technology, 2002, 36(20): 4454-4459
[17]
Lee S S, Lee J Y, Keener T C. Mercury oxidation and adsorption characteristics of chemically promoted activated carbon sorbents[J]. Fuel Processing Technology, 2009, 90(10): 1314-1318
[18]
Lee S S, Lee J Y, Keener T C. Novel sorbents for mercury emissions control from coal-fired power plants[J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39(2): 137-142
[19]
Mei Z J, Shen Z M, Zhao Q J, et al. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon[J]. Journal of Hazardous Materials, 2008, 152 (2): 721-729
[20]
Fang P, Cen C P, Chen D S, et al. Carbonaceous adsorbents prepared from sewage sludge and its application for Hg0 adsorption in simulated flue gas[J]. Chinese Journal of Chemical Engineering, 2010, 18(2): 231-238
[21]
Lee S H, Rhim Y J, Cho S P, et al. Carbon-based novel sorbent for removing gas-phase mercury[J]. Fuel, 2006, 85(2): 219-226
[22]
O'Dowd W J, Pennline H W, Freeman M C, et al. A technique to control mercury from flue gas: The Thief Process[J]. Fuel Processing Technology, 2006, 87 (12): 1071-1084
[23]
Pennline H W, Granite E J, Freeman M C, et al. Thief process for the removal of mercury from flue gas. U.S. Patent 6, 521, 021, Feb. 18, 2003
Zhang A C, Sun L S, Xiang J, et al. Removal of elemental mercury from coal combustion flue gas by bentonite-chitosan and their modifier[J]. Journal of Fuel Chemistry and Technology, 2009, 37(4): 489-495
[26]
Sandhya E. Gas-Phase Mercury Adsorption Rate Studies[J]. Energy Fuels, 2007, 21(2): 852-857
[27]
Granite E J, Pennline H W, Hargis R A. Novel sorbents for mercury removal from flue gas[J]. Industrial & Engineering Chemistry Research, 2000, 39(4): 1020-1029
[28]
Jain A, Reihani S A, Fischer C C, et al. Ab initio screening of metal sorbents for elemental mercury capture in syngas streams[J]. Chemical Engineering Science, 2010, 65(10): 3025-3033
[29]
Granite E J, Myers C R, King W P, et al. Sorbents for mercury capture from fuel gas with application to gasification systems[J]. Industrial & Engineering Chemistry Research, 2006, 45(13): 4844-4848
[30]
Drelich J, White C L, Xu Z H. Laboratory tests on mercury emission monitoring with resonating gold-coated silicon cantilevers[J]. Environmental Science & Technology, 2008, 42(6): 2072-2078
[31]
Quentin J L, Yan C, Yi L, et al. Mercury capture from flue gas using palladium nanoparticle-decorated substrates as injected sorbent[J]. Energy Fuels, 2009, 23(3): 1512-1517
[32]
Liu Y. Zeolite-supported silver nanoparticles for coal-fired power plant mercury emission control. PhD. University of Alberta, Edmonton, Alberta, Canada, 2009
[33]
Liu Y, Bisson T M, Yang H Q, et al. Recent developments in novel sorbents for flue gas clean up[J]. Fuel Processing Technology, 2010, 91(10): 1175-1197
[34]
Kuang M, Yang G H, Chen W J, et al. Study on mercury desorption from silver-loaded activated carbon fibre and activated carbon fibre[J]. Journal of Fuel Chemistry and Technology, 2008, 36(4): 468-473
[35]
Luo G Q, Yao H, Xu M H, et al. Carbon nanotube-silver composite for mercury capture and analysis[J]. Energy & Fuels, 2010, 24(1): 419-426
[36]
Dong J, Xu Z, Kuznicki S M. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents[J]. Environmental Science & Technology, 2009, 43(9): 3266-3271
[37]
Zhong Z P, Jin B S, Huang Y J, et al. Experimental study on flue gas purifying of MSW incineration using in-pipe jet adsorption techniques[J]. Waste Management, 2008, 28(10): 1923-1932
[38]
Querol X, Moreno N, Umana J C, et al. Synthesis of zeolites from coal fly ash: an overview[J]. International Journal of Coal Geology, 2002, 50(1/4): 413-423
[39]
Leroy C, Ferro M C, Monteiro R C C. Production of glass-ceramics from coal ashes[J]. Journal of the European Ceramic Society, 2001, 21(2): 195-202
[40]
Wu S J, Uddin M A, Sasaoka E. Characteristics of removal of mercury vapor in coal derived fuel gas over iron oxide sorbents[J]. Fuel, 2006, 85(2): 213-218
[41]
Wu S J, Ozaki M, Uddin M A, et al. Development of iron-based sorbents for Hg0 removal from coal derived fuel gas: Effect of hydrogen chloride[J]. Fuel, 2008, 87(4/5): 467-474
[42]
Ozaki M, Uddin M A, Sasaoka E, et al. Temperature programmed decomposition desorption of the mercury species over spent iron-based sorbents for mercury removal from coal derived fuel gas[J]. Fuel, 2008, 87(17/18): 3610-3615
[43]
Dong J, Xu Z, Kuznicki S M. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents[J]. Environmental Science & Technology, 2009, 43(9): 3266-3271
[44]
Pavlish J H, Sondreal E A, Mann M D, et al. Status review of mercury control options for coal-fired power plants[J]. Fuel Processing Technology, 2003, 82(2/3): 89-165
Lee J Y, Cho K, Cheng L, et al. Investigation of a mercury speciation technique for flue gas desulfurization materials[J]. Journal of Air Waste Managment Association, 2009, 59(8): 972-979
[47]
Hower J C, Senior C L, Suuberg E M, et al. Mercury capture by native fly ash carbons in coal-fired power plants[J]. Progress in Energy and Combustion Science, 2010, 36(4): 510-529
[48]
Goodarzi F, Hower J C. Classification of carbon in Canadian fly ashes and their implications in the capture of mercury[J]. Fuel, 2008, 87(10/11): 1949-1957
[49]
Li Y, Murphy P, Wu C Y. Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite[J]. Fuel Processing Technology, 2008, 89(6): 567-573
[50]
Li Y, Murphy P, Wu C Y, et al. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas[J]. Environmental Science & Technology, 2008, 42(14): 5304-5309
[51]
Abu-Daabes M A, Pinto N G. Synthesis and characterization of a nano-structured sorbent for the direct removal of mercury vapor from flue gases by chelation[J]. Chemical Engineering Science, 2005, 60(7): 1901-1910
[52]
Bolger P T, Szlag D C. An electrochemical system for removing and recovering elemental mercury from a gas stream[J]. Environmental Science & Technology, 2002,36(20): 4430-4435
[53]
Pacynal E G, Pacyna J M, Steenhuisen F, et al. Global anthropogenic mercury emission inventory for 2000[J]. Atmospheric Environment, 2006, 40(22): 4048-4063
[54]
Wu B, Peterson T W, Shadman F. Interactions between vapor-phase mercury compounds and coal char in synthetic flue gas[J]. Fule Processing Technology, 2000, 63(2/3): 93-107
Niksa S, Fujiwara N, Fujita Y. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas[J]. Journal of the Air and Waste Managment Association, 2005, 55 (12): 894-901
[57]
Rebecca N, John C K, Nick M M. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species[J]. Fule Processing Technology, 2000, 65-66(1): 423-438
[58]
Ghorishi S B, Lee C W, Jozewicz W S, et al. Effects of fly ash transition metal content and flue gas HCl/SO2 ratio on mercury speciation in waste combustion[J]. Environmental Engineering Science, 2005, 22(2): 221-231
[59]
Wang Y J, Duan Y F, Yang L G, et al. Experimental study on mercury transformation and removal in coal-fired boiler flue gases[J]. Fule Processing Technology, 2009, 90(5): 643-651
[60]
Pavlish J H, Holmes M J, Benson S A, et al. Application of sorbents for mercury control for utilities burning lignite coal[J]. Fule Processing Technology, 2004, 85 (6/7):563-576
[61]
Lee S J, Seo Y C, Jurng J, et al. Removal of gas-phase elemental mercury by iodine-and chlorine-impregnated activated carbons[J]. Atmosphere Environment, 2004, 38(29): 4887-4893
[62]
Jones A P, Hoffmann J W, Smith D N, et al. DOE/NETL's phase Ⅱ mercury control technology field testing program: preliminary economic analysis of activated carbon injection[J]. Environmental Science & Technology, 2007, 41(4): 1365-1371
[63]
Yan R, David T L, Tsen L, et al. Bench-scale experimental evaluation of carbon performance on mercury vapour adsorption[J]. Fuel, 2004, 83(17/18): 2401-2409
[64]
Lee S H, Park Y O. Gas-phase mercury removal by carbon-based sorbents[J]. Fule Processing Technology, 2003, 84(1/3): 197-206
[65]
Hutson N D, Attwood B C, Scheckel K G. XAS and XPS characterization of mercury binding on brominated activated carbon[J]. Environmental Science & Technology, 2007, 41(5): 1747-1752
Hsi H, Rood M J, Abadi M R. Mercury adsorption properties of sulfur-impregnated adsorbents[J]. Journal of Environmental Engineering, 2002, 128 (11): 1080-1089
[68]
Wang J W, Yang J L, Liu Z Y. Gas-phase elemental mercury capture by a V2O5/AC catalyst[J]. Fuel Processing Technology, 2010, 91(6): 676-680
[69]
Mei Z J, Shen Z M, Yuan T, et al. Removal of vapor-phase elemental mercury by N-doped CuCoO4 loaded on activated carbon[J]. Fuel Processing Technology, 2007, 88(6): 623-629
[70]
Klasson K T, Lima I M, Boihem Jr. L L, et al. Surface water quality assessment by the use of combination of multivariate statistical classification and expert information[J]. Chemosphere, 2010, 80(7): 2466-2470
[71]
Klasson K T, Lima I M, Boihem Jr. L L. Poultry manure as raw material for mercury adsorbents in gas applications[J]. Journal of Applied Poultry Research, 2009,18(5): 562-569
[72]
Cui H, Cao Y, Pan W P. Preparation of activated carbon for mercury capture from chicken waste and coal[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(2): 319-324
[73]
Jurng J, Lee T G, Lee G W, et al. Mercury removal from incineration flue gas by organic and inorganic adsorbents[J]. Chemosphere, 2002, 47(9): 907-913
[74]
Poulston S, Granite E J, Pennline H W, et al. Metal sorbents for high temperature mercury capture from fuel gas[J]. Fuel, 2007, 86(14): 2201-2203
[75]
Liu Y, Kelly D A, Yang H, et al. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant[J]. Environmental Science & Technology, 2008, 42(16): 6205-6210
[76]
Mendioroz S, Guijarro M I, Bermejo P J, et al. Mercury retrieval from flue gas by monolithic adsorbents based on sulfurized sepiolite[J]. Environmental Science & Technology, 1999, 33(10): 1697-1702
[77]
Chojnacki A, Chojnacka K, Hoffmann J, et al. The application of natural zeolites for mercury removal: from laboratory tests to industrial scale[J]. Minerals Engineering, 2004, 17(7/8): 933-937
[78]
Iyer R S, Scoot J A. Power station fly asha review of value-added utilization outside of the construction industry[J]. Resources and Conservation and Recycling, 2001, 31(3): 217-228
[79]
Dong J, Xu Z, Kuznicki S M. Magnetic multi-functional nano composites for environmental applications[J]. Advanced Functional Materials, 2009, 19(8):1268-1275
[80]
Rallo M, Lopez-Anton M A, Perry R, et al. Mercury speciation in gypsums produced from flue gas desulfurization by temperature programmed decomposition[J]. Fuel, 2010, 89(8): 2157-2159
[81]
Malerius O, Werther J. Modeling the adsorption of mercury in the flue gas of sewage sludge incineration[J]. Chemical Engineering Journal, 2003, 96(1/3): 197-205
[82]
Chi Y, Yan N P, Qu Z, et al. The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas[J]. Journal of Hazardous Materials, 2009, 166(2/3): 776-781
[83]
Li Y, Wu C Y. Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2-TiO2 nanocomposite[J]. Environmental Science & Technology, 2006, 40(20): 6444-6448
[84]
Ji L, Abu-Daabes M A, Pinto N G. Thermally robust chelating adsorbents for the capture of gaseous mercury: Fixed-bed behavior[J]. Chemical Engineering Science, 2009, 64(3): 486-491