Arthur C L, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers[J]. Analytical Chemistry, 1990, 62 (19): 2145-2148
Hu X G, Pan J L, Hu Y L, et al. Preparation and evaluation of propranolol molecularly imprinted solid-phase microextraction fiber for trace analysis of beta-blockers in urine and plasma samples[J]. Journal of Chromatography A, 2009, 1216(2): 190-197
[4]
Djozan D, Ebrahimi B, Mahkam M, et al. Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber[J]. Analytica Chimica Acta, 2010, 674: 40-48
[5]
Djozan D, Tahmineh B. Preparation and evaluation of solid-phase microextraction fibers based on monolithic molecularly imprinted polymers for selective extraction of diacetylmorphine and analogous compounds[J]. Journal of Chromatography A, 2007, 1166: 16-23
[6]
Djozan D, Ebrahimi B. Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer:Application for GC and GC/MS screening of triazine herbicides in water, rice and onion[J]. Analytica chimica acta, 2008, 616 (2) : 152-159
[7]
David F, Sandra P. Stir bar sorptive extraction for trace analysis[J]. Journal of Chromatography A, 2007, 1152 (12): 54-69
[8]
Zhu X L, Cai J B, Yang J, et al. Films coated with molecular imprinted polymers for the selective stir bar sorption extraction of monocrotophos[J]. Journal of Chromatography A, 2006, 1131: 37-44
[9]
Zhu X L,Zhu Q S. Molecular imprinted nylon-6 stir bar as a novel extraction technique for enantioseparation of amino acids[J]. Journal of Applied Polymer Science, 2008, 109: 2665-2670
[10]
Xu Z G, Hu Y F, Hu Y L, et al. Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of β2-agonists in complex samples[J]. Journal of Chromatography A, 2010, 1217: 3612-3618
[11]
Hu Y L, Li J W, Hu Y F, et al. Development of selective and chemically stable coating for stir bar sorptive extraction by molecularly imprinted technique[J]. Talanta, 2010, 82:464-470
[12]
Yu Jorn C C, Svetla Krushkova, Lai Edward P C, et al. Molecularly-imprinted polypyrrole-modified stainless steel frits for selective solid phase preconcentration of ochratoxin A[J]. Analytical and Bioanalytical Chemistry, 2005, 382(7): 1534-1540
[13]
Yu, Jorn C C, Lai Edward P C. Molecularly imprinted polypyrrole modified carbon nanotubes on stainless steel frit for selective micro solid phase pre-concentration of ochratoxin A[J]. Reactive & Functional Polymer, 2006, 66(7): 702-711
Li M K Y, Lei N Y, Gong C B, et al. An organically modified silicate molecularly imprinted solid-phase microextraction device for the determination of polybrominated diphenyl ethers[J]. Analytica Chimica Acta, 2009, 633: 197-203
[17]
Li Q L, Ma X X, Yuan D X, et al. Evaluation of the solid-phase microextraction fiber coated with single walled carbon nanotubes for the determination of benzene, toluene, ethylbenzene, xylenes in aqueous samples[J]. Journal of Chromatography A, 2010, 1217(15): 2191-2196
[18]
Prasad B B, Tiwari M P, Madhuri R, et al. Development of a highly sensitive and selective hyphenated technique(molecularly imprinted micro-solid phase extraction fiber-molecularlyimprinted polymer fiber sensor) for ultratrace analysis of folic acid[J]. Analytica Chimica Acta, 2010, 662:14-22
[19]
Prasad B B, Tiwari K, Singh M, et al. Molecularly imprinted polymer-based solid-phase microextraction fiber coupled with molecularly imprinted polymer-based sensor for ultratrace analysis of ascorbic acid[J]. Journal of Chromatography A, 2008,1198-1199: 59-66
[20]
Zheng M M, Gong R, Zhao X, et al. Selective sample pretreatment by molecularly imprinted polymer monolith for the analysis of fluoroquinolones from milk samples[J]. Journal of Chromatography A, 2010, 1217: 2075-2081
Mullett W M, Martin P, Pawliszyn J, In-tube molecularly imprinted polymer solid-phase microextraction for the selective determination of propranolol[J]. Analytical Chemistry, 2001, 73(11):2383-2389
[28]
Koster E H M, Crescenzi C, Den Hoedt W, et al. Fibers coated with molecularly imprinted polymers for solid-phase microextraction[J]. Analytical Chemistry, 2001. 73(13):3140-3145
[29]
Hu X G, Hu Y L , Li G K. Development of novel molecularly imprinted solid-phase microextraction fiber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography[J]. Journal of Chromatography A, 2007, 1147: 1-9
[30]
Hu X G, Pan J L, Hu Y L. Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples[J]. Journal of Chromatography A, 2008, 1188: 97-107
[31]
Hu Y L, Wang Y Y, Chen X G, et al. A novel molecularly imprinted solid-phase microextraction fiber coupled with high performance liquid chromatography for analysis of trace estrogens in fishery samples[J]. Talanta, 2010, 80(5): 2099-2105
[32]
Tan F, Zhao H X, Li X X, et al. Preparation and evaluation of molecularly imprinted solid-phase microextraction fibers for selective extraction of bisphenol A in complex samples[J]. Journal of Chromatography A, 2009, 1216: 5647-5654
[33]
Turiel E, Tadeo J L, Martin-Esteban A. Molecularly imprinted polymeric fibers for solid-phase microextraction[J]. Analytical Chemistry, 2007 , 79:3099-3104
[34]
Djozan D, Mahkam M, Ebrahimi B. Preparation and binding study of solid-phase microextraction fiber on the basis of ametryn-imprinted polymer application to the selective extraction of persistent triazine herbicides in tap water, rice, maize and onion[J]. Journal of Chromatography A, 2009(1216):2211-2219
[35]
Prieto A, Basauri O, Rodil R, et al. Stir-bar sorptive extraction: A view on method optimisation, novel applications, limitations and potential solutions[J]. Journal of Chromatography A, 2010, 1217(16): 2642-2666
Yang L Q, Zhao X M, Zhou J. Selective enrichment and determination of nicosulfuron in water and soil by a stir bar based on molecularly imprinted polymer coatings[J]. Analytica Chimica Acta, 2010, 670: 72-77