全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

镉胁迫下两种不同小白菜的生长、镉吸收及其亚细胞分布特征

Keywords: ,细胞壁,亚细胞分布,小白菜

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过室内溶液培养试验,研究了镉(0.5mg·L-1、5.0mg·L-1)胁迫对两个不同镉耐性小白菜品种上海青(Cd敏感型)和杭油冬(Cd耐性)的生长、Cd吸收及亚细胞分布的影响.结果表明,高Cd胁迫10d后两个小白菜生长受到严重抑制,植物地上部和地下部Cd含量随着Cd处理浓度的增加而增加,且Cd主要积累在植物的根系.此外,Cd在地上部和地下部亚细胞组分中的分配率不同,在地上部各组分中,Cd主要分布在细胞质,其次是细胞壁,分配率最少的是细胞器.在地下部各组分中,在低浓度处理下Cd在亚细胞组分中的分布与地上部分布一致,但在高Cd处理下Cd主要分布在细胞壁,其次是细胞质,在细胞器中分布最少.Cd在两个不同耐性小白菜品种中的吸收和分布存在显著的基因型差异.

References

[1]  陈玉成, 赵中金. 重庆市土壤-蔬菜系统中重金属的分布特征及其化学调控研究[J]. 农业环境科学学报, 2003, 22 (1): 44-47
[2]  蔡保松, 张国平. 大, 小麦对镉的吸收, 运输及在籽粒中的积累[J]. 麦类作物学报, 2002, 22 (3): 82-86
[3]  Verkleij J A C, Koevoets P, Riet J, et al. Poly(γ-glutamylcysteinyl)glycines or phytochelatins and their role in cadmium tolerance of Silene vulgaris[J]. Plant Cell and Environment, 1990, 13 (9): 913-921
[4]  王宏镔, 王焕校, 问传浩, 等. 镉处理下不同小麦品种几种解毒机制探讨[J]. 环境科学学报, 2002, 22 (4): 523-528
[5]  Grill E, Loffler S, Winnacker E L, et al. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase)[J]. Proceedings of the National Academy of Sciences, 1989, 86 (18): 6838-6842
[6]  Weigel H J, Jager H J. Subcellular distribution and chemical form of cadmium in bean plants[J]. Plant Physiology, 1980, 65 (3): 480-482
[7]  杨明杰, 林咸永. Cd 对不同种类植物生长和养分积累的影响[J]. 应用生态学报, 1998, 9 (1): 89-94
[8]  杨肖娥, 龙新宪, 倪吾钟. 超积累植物吸收重金属的生理及分子机制[J]. 植物营养与肥料学报, 2002, 8 (1): 8-15
[9]  周卫, 汪洪. 镉胁迫下钙对镉在玉米细胞中分布及对叶绿体结构与酶活性的影响[J]. 植物营养与肥料学报, 1999, 5 (4): 335-340
[10]  Hans J W, Hans J J. Subcellular distribution and chemical form of cadmium in bean plants[J].Plant Physiology, 1980, 65 (3): 480-482
[11]  Wu F, Zhang G, Dominy P. Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity[J]. Environmental and Experimental Botany, 2003, 50 (1): 67-78
[12]  罗厚枚, 王宏康. 土壤重金属污染对作物的影响[J]. 环境化学, 1994, 13 (5): 427-432
[13]  Obata H, Umebayashi M. Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium[J]. Journal of Plant Nutrition, 1997, 20 (1): 97-105
[14]  Zhang G, Fukami M, Sekimoto H. Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat[J]. Journal of Plant Nutrition, 2000, 23 (9): 1337-1350
[15]  Zhang G, Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage[J]. Field Crops Research, 2002, 77 (2): 93-98
[16]  蔡保松, 曹林奎. 镉对小麦生长发育的影响及其基因型间差异[J]. 西北农林科技大学学报, 2003, 31 (1): 62-66
[17]  刘秀梅, 王庆仁. 6 种植物对 Pb 的吸收与耐性研究[J]. 植物生态学报, 2002, 26 (5): 533-537
[18]  许嘉琳, 杨居荣. 陆地生态系统中的重金属[M]. 北京: 中国环境科学出版社, 1995
[19]  Hernandez L E, Garate A, Carpena-Ruiz R. Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum[J]. Plant and Soil, 1997, 189 (1): 97-106
[20]  杨居荣, 鲍子平. 镉, 铅在植物细胞内的分布及其可溶性结合形态[J]. 中国环境科学, 1993, 13 (4): 263-268
[21]  Krupa Z, Baszynski T. Some aspect of heavy metal toxicity towards photosynthetic apparatus-direct and indirect effect of light and dark reactions[J]. Acta Physiologiae, 1995, 17 (2): 177-190
[22]  Barcelo J, Poschenrieder C. Plant water relations as affected by heavy metal stress: a review[J]. Journal of Plant Nutrition, 1990, 13 (1): 1-37
[23]  Ramos I, Esteban E, Lucena J J, et al. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction[J]. Plant Science(Limerick), 2002, 162 (5): 761-767
[24]  Barcelo J, Vazquez M D, Poschenrieder C. Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.)[J]. New Phytologist, 1988, 108 (1): 37-49
[25]  Lozano-Rodriguez E, Hernandez L E, Bonay P, et al. Distribution of cadmium in shoot and root tissues1[J]. Journal of Experimental Botany, 1997, 48 (1): 123-128
[26]  陈瑛, 李延强, 杨肖娥, 等. 不同品种小白菜对镉的吸收积累差异[J]. 应用生态学报, 2009, 20(3): 736-740
[27]  夏增禄. 中国土壤环境容量[M]. 北京: 地震出版社, 1992
[28]  Baker A J M. Metal tolerance[J]. New Phytologist. 1987, 106 (1): 93-111
[29]  Cataldo D A, Garland T R, Wildung R E. Cadmium distribution and chemical fate in soybean plants[J]. Plant Physiology, 1981, 68 (4): 835-839
[30]  Brooks R R, Shaw S, Asensi Marfil A. The chemical form and physiological function of nickel in some Iberian Alyssum species[J]. Physiologia Plantarum, 1981, 51 (2): 167-170
[31]  Grill E, Winnacker E L, Zenk M H. Phytochelatins: the principal heavy-metal complexing peptides of higher plants[J]. Science, 1985, 230 (4726): 674-676
[32]  杨居荣, 黄翌. 植物对重金属的耐性机理[J]. 生态学杂志, 1994, 13 (6): 20-26
[33]  孙光闻, 朱祝军, 方学智. 不同 Cd 水平对小白菜生长及其营养元素含量的影响[J]. 农业环境科学学报, 2005, 24 (4): 658-661
[34]  袁玲, 祝莉莉. Cu2+, Ag2+ 在水稻种子萌发及幼苗生长中的作用[J]. 湖北农业科学, 2000, 204 (2): 24-25
[35]  Shah K, Dubey R S. Cadmium elevates level of protein, amino acids and alters activity of proteolytic enzymes in germinating rice seeds[J]. Acta Physiologiae Plantarum, 1998, 20 (2): 189-196
[36]  Kabata-Pendias A, Pendias H. Trace elements in soils and plants[M]. Essex: CRC press, 2001
[37]  杨居荣, 贺建群, 黄翌, 等. 农作物镉耐性的种内和种间差异. I. 种间差异[J]. 应用生态学报, 1994, 5 (2) : 192-196
[38]  Nishizono H, Ichikawa H, Suziki S, et al. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense[J]. Plant and Soil, 1987, 101 (1): 15-20

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133