全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

Cu(Ⅱ)、Fe(Ⅲ)和Cr(Ⅲ)在弱酸性条件下对大肠杆菌的毒性和致毒机制

Keywords: 过渡金属,抗坏血酸,毒性,ESR

Full-Text   Cite this paper   Add to My Lib

Abstract:

比较了弱酸性条件下Cu(Ⅱ)、Fe(Ⅲ)和Cr(Ⅲ)单独或加入抗坏血酸(L-AscA)对大肠杆菌(E.coli)的毒性,深入分析了Cu(Ⅱ)/L-AscA体系的特性;通过电子自旋共振(ESR)定量分析羟基自由基(·OH)浓度以分析其毒性机理.结果表明,pH4.0下L-AscA促进了Cu(Ⅱ)、Fe(Ⅲ)而非Cr(Ⅲ)的毒性,三者毒性Cu(Ⅱ)>Cr(Ⅲ)>Fe(Ⅲ).通常被认为无毒的Cr(Ⅲ)却在0.2mmol·L-1,pH4.0时表现出了很高的杀菌率.与0.01%L-AscA共存时,Cu(Ⅱ)为200、20μmol·L-1和2、0.2μmol·L-1下,E.coli的存活率分别在30min和2h内迅速降至零,且该体系对自然水体中分离所得的其它7种菌株同样具有明显的制御作用.ESR结果表明L-AscA的加入使200μmol·L-1Cu(Ⅱ)反应体系的·OH浓度约提高两倍,·OH浓度呈Cu(Ⅱ)浓度依赖.但在Fe(Ⅲ)、Cr(Ⅲ)/L-AscA体系中未检测到·OH,表明三者对细胞的致毒机制存在明显差异.

References

[1]  Finney L A, O'Halloran T V. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors[J]. Science, 2003, 300(5621): 931-936
[2]  戴乾圜, 居逯. 羟基自由基与DNA中腺嘌呤碱基间反应的AM1研究[J]. 环境化学, 2010, 29(6): 529-536
[3]  Cross J B, Currier R P, Torraco D J, et al. Killing of bacillus spores by aqueous dissolved oxygen, ascorbic acid, and copper ions[J]. Appl Environ Microbiol, 2003, 69(4): 2245-2252
[4]  Takemura, Y, Satoh M, Satoh K, et al. High dose of ascorbic acid induces cell death in mesothelioma cells[J]. Biochem Biophys Res Commun, 2010, 394(2): 249-253
[5]  Chen Q, Espey M G, Sun A Y, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo[J]. Proc Natl Acad Sci U S A, 2007, 104(21): 8749-8754
[6]  Clement M V, Ramalingam J, Long L H, et al. The in vitro cytotoxicity of ascorbate depends on the culture medium used to perform the assay and involves hydrogen peroxide[J]. Antioxidants & Redox Signaling, 2001, 3(1): 157-163
[7]  Arakawa N, Nemoto S, Suzuki E, et al. Role of hydrogen peroxide in the inhibitory effect of ascorbate on cell growth[J]. J Nutr Sci Vitaminol (Tokyo), 1994, 40(3): 219-227
[8]  Wang M, Yang G, Feng H, et al. Optimization of Fenton process for decoloration and COD removal in tobacco wastewater and toxicological evaluation of the effluent[J]. Water Sci Technol, 2011, 63(11): 2471-2477
[9]  Klamerth N, Malato S, Aguera A, et al. Treatment of municipal wastewater treatment plant effluents with modified photo-fenton as a tertiary treatment for the degradation of micro pollutants and disinfection[J]. Environ Sci Technol, 2012, 46(5): 2885-2892
[10]  邹彩琼,邓安平,赵小蓉,等. 铁锰矿类Fenton异相光催化降解有毒有机染料[J]. 环境化学, 2010, 29(6): 1032-1037
[11]  Arciello M, Rotilio G, Rossi L. Copper-dependent toxicity in SH-SY5Y neuroblastoma cells involves mitochondrial damage[J]. Biochem Biophys Res Commun, 2005, 327(2): 454-459
[12]  Krumschnabel G, Manzl C, Berger C, et al. Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes[J]. Toxicol Appl Pharmacol, 2005, 209(1): 62-73
[13]  Rau M A, Whitaker J, Freedman J H, et al. Differential susceptibility of fish and rat liver cells to oxidative stress and cytotoxicity upon exposure to prooxidants[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2004, 137(4): 335-342
[14]  Zastawny T H, Altman S A, Randers-Eichhorn L, et al. DNA base modifications and membrane damage in cultured mammalian cells treated with iron ions[J]. Free Radic Biol Med, 1995, 18(6): 1013-1022
[15]  Valko M, Morris H, Cronin M T. Metals, toxicity and oxidative stress[J]. Curr Med Chem, 2005, 12(10): 1161-1208
[16]  Peebles B, Nagy A, Waldman W J, et al. Fenton activity and cytotoxicity studies of iron-loaded carbon particles[J]. Environ Sci Technol, 2010, 44(17): 6887-6892
[17]  Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 2011, 283(2/3): 65-87
[18]  Ozawa T, Hanaki A. Spin-trapping studies on the reactions of Cr(Ⅲ) with hydrogen peroxide in the presence of biological reductants: is Cr(Ⅲ) non-toxic?[J]. Biochem Int, 1990, 22(2): 343-352
[19]  Dehghan M, Akhtar-Danesh N, McMillan C R, et al. Is plasma vitamin C an appropriate biomarker of vitamin C intake? A systematic review and meta-analysis[J]. Nutr J, 2007, 6: 41-53
[20]  Macomber L, Imlay J A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity[J]. Proc Natl Acad Sci U S A, 2009, 106(20): 8344-8349
[21]  Banu B S, Ishaq M, Danadevi K, et al. DNA damage in leukocytes of mice treated with copper sulfate[J]. Food and Chemical Toxicology, 2004, 42(12): 1931-1936

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133